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A B S T R A C T   

Human smuggling accounts for a significant part of transnational organized crime, creating a growing threat to 
national and international security and putting at risk the health and lives of the people being smuggled. Early 
detection and interception of human beings hidden in containers or trucks are therefore of considerable 
importance, especially at key transportation hubs, such as at international borders and harbors. The major 
challenge is to provide fast inspection procedures without needing to open sealed trucks and containers. The 
detection of trace key volatile organic compounds, which includes aldehydes and ketones, emitted by humans 
can be used to rapidly determine human presence, requiring only several ml of air to be taken from inside a 
container. In this paper, we describe a prototype portable device for the rapid detection of hidden or entrapped 
people, employing a combined ion mobility spectrometer and sensor array system for obtaining a volatile 
signature of human presence. The detection limits of this combined analytical device are sufficiently low for use 
in sensing ketones and aldehydes being emitted by humans in closed containers. For easy handling by security 
personnel, a classification algorithm is applied that provides a simple YES or NO decision. With a training dataset 
of more than 1000 measurements, the algorithm achieved an area under curve of 0.9 for untrained scenarios. The 
field measurements show that two people need to stay in a car for between 20 and 30 minutes in order for the 
emitted trace volatile organic compounds to reach concentrations high enough for reliable detection with our 
analytical device.   

1. Introduction 

The illegal movement of people across borders affects many coun
tries, most notably the United States and the European Union. In recent 
years the trafficking or smuggling of people to Europe has reached 
epidemic proportions [1]. This not only puts a major strain on European 
resources, but endangers the health and lives of the people being traf
ficked or smuggled. Criminal networks promote migrant smuggling, 
offering transportation in trucks, containers and specially reconstructed 
vehicles, frequently at very high prices. Often the people being trans
ported suffer inhumane conditions, being given barely any food or drink 
and receive little or no information about their ultimate location. 

Owing to limited manpower and the lack of reliable, cheap and easy 
to operate search and rescue devices, security personnel are unable to 
cope with the high influx of people illegally entering a country. In this 
context, the rapid detection, and hence interception, of smuggled or 
trafficked people is important, not only in the interest of saving them 
from life-threatening situations, but also for protecting borders. 

At border controls with high rates of traffic, the time available for 
inspection plays a critical role, because thousands of trucks and con
tainers may cross a border every day. Therefore, any disruptions caused 
by security measures need to be limited. For a detection device to be 
applicable, a container needs to be inspected within 2–3 minutes, 
preferably without opening its doors or breaking any customs seals. 
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1.1. Tracking systems 

Many search and rescue teams increasingly rely on specialized 
detection systems. In Europe, search operations are currently conducted 
primarily with the help of x-ray scanners, CO2 sensors and infrared heat 
cameras. These technologies have limitations; infrared cameras are not 
effective where there are only very small temperature differences be
tween the body and the surroundings, which often occurs in the summer 
when temperatures around 35 ◦C or higher are reached, and are limited 
to use with trucks that have tarpaulins; CO2 sensors have high false- 
positive rates, because of the elevated CO2 emissions from organic ma
terials such as vegetables, fruits, wood, etc.; and x ray scanners entail 
health risks from the ionizing effects of the radiation and hence are only 
occasionally used. 

Dogs are still the preferred choice for quick detection of entrapped 
people [2], because they can rapidly track the human scent, but they 
have limitations. For example, dogs tire after about of intensive search. 
Moreover, they can become stressed and frustrated if they are unsuc
cessful [3]. Another issue is the significant cost involved in their training 
and upkeep, in addition to the cost for a trained handler. Therefore, for 
all these reasons there is a demand for the development of sensitive, 
inexpensive, user-friendly, safe and portable detectors that can help 
rapidly detect hidden people, either in addition to, or in place of, search 
and rescue dogs, that basically imitate dogs by sniffing for the charac
teristic scent of a human being. One approach is the real-time chemical 
analysis of air in small-enclosed spaces, which can give concrete in
dications of the presence of people. An instrumental human scent de
tector has the potential to significantly improve the success rate for 
detecting hidden people. 

1.2. Human scent – emission of volatile organic compounds (VOCs) 

The human body constantly releases hundreds of trace VOCs through 
breath, sweat, and skin [4–6], offering a continuous source of bio
markers. Volatile substances emitted from blood, urine [7] and feces 
[8–10] can also provide characteristic volatiles of human presence, but 
these are transient and therefore their emission profile rapidly changes 
with time. The combination of these volatiles produces a human 
chemical signature that can be detected with sensitive analytical 
chemical techniques [11]. 

A complicating factor that affects the use of human volatile emis
sions, independent of where they are coming from, is the complex 
background chemical matrix, which can be very diverse depending on 
the environment people are being kept or trapped in. The environment 
releases volatiles into the surrounding atmosphere that can confound 
the volatiles emitted by humans. Thus, it is crucial to select volatile 
markers that provide, as far as possible, a unique signature of human 
presence, which is distinct from that associated with goods in a 
container or from packaging. Using this criterion, the combination of 
CO2 and ten trace volatile metabolites, based on the results by Mochalski 
[11] (ammonia, acetone, 6-methyl-5-hepten-2-one, isoprene, n-prop
anol, n-hexanal, n-heptanal, n-octanal, n-nonanal, and acetic acid), have 
been selected as being sufficiently characteristic for determining as to 
whether a human being is present or not with a high level of confidence. 

The detection of a volatile signature for use in locating people opens 
up new possibilities for different search and rescue scenarios, i.e. not just 
those associated with illegal immigrants. For example, it includes the 
detection of people entrapped in a collapsed building following a natural 
disaster, such as an earthquake, or as a result of a bomb attack. 

1.3. Portable VOC detectors 

Owing to the fact that the concentrations of many human VOCs of 
interest are at trace levels, typically parts per billion by volume (ppbv), 
their detection places great demands on analytical technologies. 
Furthermore, while laboratory-based state-of-the-art analytical 

instrumentation, such as Proton Transfer Reaction Mass Spectrometers 
[12,13] and Selected Ion Flow Tube Mass Spectrometers [14] can detect 
VOCs at such low concentrations in real-time [15], these instruments are 
complex and not portable. Consequently, they cannot be easily used in 
the field. 

Analytical devices that can be carried by emergency personal in a 
backpack or as hand-held devices are important for on-site application. 
Keeping this relevant aspect in mind, gas sensors and ion mobility 
spectrometers (IMS) have considerable potential for use in search sce
narios owing to their small size, low costs, ease of use and fast response 
time. Here we present details on a portable device we have developed 
which combines CO2 and aldehyde sensors an ion mobility type device 
for the detection of key VOCs, to produce a key signature that is char
acteristic of humans being present. 

1.3.1. Gas Sensors 
Numerous companies manufacture gas sensor systems, often con

sisting of several sensors for multiple compound detection for the pur
pose of monitoring indoor air quality. The idea to use them for human 
scent detection is relatively new. However, the detection of human scent 
in complex chemical environments makes the development of a com
mercial sensor product challenging because of the limited selectivity 
involved. 

There are many different types of gas sensors, e.g. optical sensors 
[16], semiconducting metal oxide sensors [17], and multi-walled carbon 
nanotubes [18], all of which show good sensitivity and reasonable 
selectivity for selected compounds or compound groups especially in the 
higher ppb-ppm range. Concerning the emitted compounds by humans, 
commercial available sensors are particularly effective for the detection 
of compounds that appear at high levels such as CO2, acetone, isoprene 
and ammonia [19]. Regarding the aldehydes released by humans, 
detection in the low ppb-range is required. This limits the number of 
sensors that are commercially available. However, there are promising 
results associated with the detection of formaldehyde using biochemical 
gas sensor [20] or applying fluorescent probes based on 
aggregation-induced emission [21]. 

A commercially available electrochemical sensor reported first by 
Obermeier et al. [22] enables the detection of aldehydes down to the 
lower ppbv levels. Its basic mechanism deals with oxidation of the al
dehydes to the corresponding acids. For this purpose, it measures the 
oxygen consumption electrochemically. Aldehydes are oxidized at the 
anode, and the electrons produced by the oxidation of aldehydes are 
consumed at the cathode. The sensor is a typical amperometric gas 
sensor. The model used is this study employs an integrated circuit that 
converts the measured sensor current (proportional to analyte concen
tration) to a voltage output, which is recorded by the system. 

1.3.2. Aspiratory Ion Mobility Spectrometry (aIMS) 
IMS has found its greatest use in homeland security applications, 

primarily for the detection of chemical warfare agents and explosives 
[23]. However, this technology has also proven itself useful in several 
civilian applications, including food quality control, medical science, 
and industrial processes [24]. Advantages of the IMS technique with 
regard to the detection of VOCs emitted by humans are its robustness, 
portability, ease of use, high sensitivity (ng/L for ketones and amines) 
and rapid (seconds) and direct (without sample preparation) 
measurements. 

A compact type of IMS, the so-called aspiratory ion mobility spec
trometer (aIMS) is a promising analytical device for use in urban search 
and rescue (USaR) as well as chemical, biological, radiological and nu
clear (CBRN) scenarios. During operation, the aIMS air is pumped 
continuously into the sensor cell, where the air molecules are ionized by 
a 241AM ion source. Ion-molecule reactions with trace VOCs produce 
signature product ions that are spatially separated according to their 
mobilities (determined by the mass, charge and collisional cross-section 
of the ions, and the type, temperature and pressure of the buffer gas). 
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Product ions are detected as a current pulse. The higher the mobility of 
an ion, the earlier it collides with a detection electrode. To operate in 
either positive or negative ion mode, the polarity of the electric field is 
reversed in cycles typically at a frequency of 1 Hz. A histogram of ion 
current at each electrode is used to provide a spectrum that provides a 
chemical fingerprint of human presence, without identifying the indi
vidual volatile compounds. Given that the gas composition of human 
emission samples and the surrounding air is extremely complex, it is 
challenging to unambiguously match VOCs to humans. Hence, the use of 
chemical fingerprints rather than trying to identify individual volatiles is 
attractive. That is the principle adopted by us in the portable locator we 
have developed and are describing here. aIMS signal values containing 8 
channels in positive and 8 channels in negative polarity were measured 
in pA then converted and read out in Volts. 

2. Experimental 

2.1. Set-up of the human tracking system 

The portable backpack human odor tracking system we have devel
oped combines a state-of-the-art aIMS (ChemproDM, Environics Oy, 
Finland), a dual channel carbon dioxide sensor module (Telaire, range: 
ppm, Amphenol Advanced Sensors, Pforzheim, Germany), and an 
aldehyde sensor (IT Dr. Gambert GmbH, Wismar, Germany). 

The housing, containing the key components of the aIMS, is water- 
resistant and can be combined with a backpack carry system (Fig. 1a- 
c). The gas sample is collected from the end of a thin (1/8 inch) inert 
flexible tube, which makes it convenient for inserting through small 
holes (e.g. through a plughole for condensed water in sealed containers). 
Using a specially designed sampling system, including inert tubing, dust 
separator and pump, the gas sample is transported to an inner gas circuit 
containing an aldehyde detector, a CO2 sensor and an aIMS. This ensures 
the continuous high airflow rate required for the aIMS (up to 1 L/min) 
triggered by an in-built pump. Thus, the sampling pump runs only when 
collecting air or flushing the system with clean outside air. 

2.2. Data acquisition and agglomeration 

A single-board Raspberry Pi 3B is employed as the core-processing 
unit to collect the data from all detectors. It runs on a Linux operating 
system and provides several hardware interfaces to communicate with 
the detectors and peripherals. Dedicated C++/QT software continu
ously collects data from the different sensors and stores the data in a 
database during acquisition intervals. Fig. 2 schematically shows the 
software architecture. The measurement protocol runs continuously and 
requests data from the aIMS device, which is connected via a RS232 
interface every second. Additionally, a second interface is available for 
communication with other programs providing a live stream of data via 
the Websocket protocol. This controls data acquisition with the hand
held sampler or a web interface. Possible commands include the starting 
and stopping of acquisition, and the enabling of a stream of live data for 
plotting or for diagnosis on the web interface. Additionally, the same 
socket is used for other data, including the fusion of CO2 or aldehyde 
values with the measured aIMS data. 

During an acquisition interval, data are stored inside a MySQL 
database. Besides the raw sensor values, additional information, such as 
a timestamp, comments and type of measurement, are saved to the 
database. All data acquired in a measurement sequence can later be 
accessed foror as part of the analysis routines. When using an external 
database, different programs can access the same data simultaneously, 
thus allowing a central and shared database server to be used by mul
tiple measurement units. However, in the present prototype the data
base runs only on the Raspberry Pi. 

2.3. Test gas preparations 

Liquid standards of selected VOCs, namely acetone, 6-methyl-5- 
hepten-2-one, isoprene, n-propanol, n-hexanal, n-heptanal, n-octanal, 
and n-nonanal were purchased from either Sigma, Sigma-Aldrich or 
Fluka, with stated purities greater than. Test gases of these compounds 
were prepared after evaporation of the liquid standards in the concen
tration range of ppb as described in [5] and measured with the aIMS and 
aldehyde sensor. 

Using the gas standards, the limits of detection were calculated with 

Fig. 1. The portable backpack human odor tracking system showing a) its set-up, b) the back-pack carry system, and c) the handheld sampler.  
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the signal-to-noise ratio of 3:1 in the case of the aldehyde sensor and 
were based on visual evaluation (minimum level at which an analyte can 
be reliably detected) for the aIMS. 

2.4. Sampling protocol for field tests 

To mimic field situations as well as possible, the following re
quirements were set for the training localities: closed rooms were 
selected with a maximum volume of 20 m3 and minimal ventilation. One 
to four people were placed in the room for at least ten minutes. 

Before starting the measurements, the room was kept empty of 
people for at least 20 minutes in order to record background VOC levels, 
with these levels being monitored 15 times alternatively for the inside 
and the outside air. Subsequently, between one and four people entered 
the room. After ten minutes, 30 measurements of the inside and the 
outside air were undertaken. The total measurement time was about one 
hour. This protocol was repeated several times - also on the same day – 
with appropriate ventilation of the room between each series of 
measurements. 

2.5. Signal quality control in the field 

Determination of a sensor’s sensitivity directly in the field is of 
utmost importance to ensure correct measurement of volatile signatures. 
For this purpose, a calibration system using a permeation device was 
constructed to permit regular monitoring of the instrument’s function
ality and sensitivity. 

The permeation tube consists of a polyether ether ketone polymer 
(PEEK) holder sealed around a perfluoroalkoxy alkane polymer (PFA) 
tube (external diameter 1/8th inch, wall thickness 1 mm) filled with a 
liquid compound (Fig. 3). Molecules of the liquid diffuse through the 
wall of the PFA tube and are carried by the gas (air) streaming through 
the tubing. A constant gas flow and permeation rate of the contained 
substance at a constant temperature results in a stable compound 
concentration. 

By switching the permeation tube to the inlet of the sensory system 
and starting sample collection, outside air is pumped through the tube 
resulting in an elevated concentration of the selected compound in the 
sample. The measured signal provided the information needed to 

determine the sensitivity of the device. 
Ideally, the concentration of a selected substance in the sample is 

between the quantification limit and the saturation level, which depends 
on the sensitivity and the linear range of the analytical system for a given 
compound. Thus, for aIMS the concentration should be between 50 and 
200 ppb, which with the current set-up using a gas flow of 250 ml/min 
for ethyl acrylate is reached in the temperature range 15–35 ◦C. Owing 
to the linear relationship between the permeation rate and the temper
ature, the anticipated signal can be calculated depending on the outside 
field temperature. However, for a quick functionality test (sensor is 
working YES/NO) any concentration in the range is suitable, and thus 
the temperature dependency can be ignored. 

It must be pointed out that if the permeation tube is stored without 
flow, it takes up to 30 minutes of flushing to achieve an equilibrium. 
Thus, for storage, the permeation tube should remain connected to the 
gas outlet of the sampling system to maintain the equilibrated state. This 
permits the function tests to be conducted immediately when the 
permeation tube is switched from the outlet to the inlet. 

2.6. Data processing algorithms 

For machine learning, a „Random Forest “method was adopted [25]. 
The following parameters were employed from the measured data from 
16 aIMS channels (eight for positive mode and the other eight for 
negative mode), a CO2 sensor, an aldehyde sensor, and pressure, 

Fig. 2. Schematic of the hardware, software and interfaces used for data acquisition, visualisation and analysis.  

Fig. 3. Set-up of permeation tube for signal quality control.  
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humidity and temperature sensors. Half of the acquired data were 
randomly allotted to a training set and half to a validation set. A 
random-forest classifier was constructed using the training set, which 
was tested on the validation set (thus on data not used for training 
purposes). Machine learning was implemented using the software H2O 
Flow [26]. The optimised setting was determined according to Cook 
[27]. The generated classifiers were exported as objects for the program 
language JAVA (keyword POJO), which were delivered to the sensor 
system as a command line program that employs data in the format 
JSON (ISO/IEC 21778:2017) as input and output. 

3. Results and Discussion 

3.1. Detection limits 

Test gases of the selected volatiles were measured separately with the 
aldehyde sensor and with aIMS. The detection limits for the compounds 
are displayed in Table 1. As expected, aIMS shows less sensitivity for the 
aldehydes, but greater sensitivity for the ketones, such as acetone and 6- 
methyl-5-hepten-2-one. From previous experiments that determined the 
volatile emission profile of humans in a body plethysmograph chamber 
[11], it is known that the detection of aldehydes at low ppb levels is 
important in order to capture the human scent, which can be done with 
the aldehyde sensor. The selectivity of the aldehyde sensor is controlled 
by the porous polytetrafluoroethylene membrane. Interestingly, besides 
the aldehydes, isoprene, which is a hydrocarbon, is also detected by the 
aldehyde sensor in low concentrations. We are not able to explain this 
cross-sensitivity to another compound class, but this provides an 
analytical advantage, since isoprene is also a key biomarker of people. 

The decreased sensitivity for aldehydes with aIMS results from the 
high humidity altering the ion-chemistry. If the moisture content of the 
sample is separated, e.g. with a chromatographic column, IMS devices 
reach detection limits in the low ppb range for aldehydes [11]. However, 
trapping out water is not an option for breath measurements, because it 
would also result in a loss of trace level compounds and further com
plicates a field device. We cannot rule out the cross sensitivity for other 
compounds e.g. unsaturated hydrocarbons associated with volatiles in 
human breath. 

The limitations of the compact aIMS with regards to detecting al
dehydes in the required low concentration range is overcome by using a 
device that combines the aIMS with an aldehyde sensor. 

3.2. Field test results 

Detection of CO2 in conjunction with VOCs is important, because it 
further enhances the analytical capabilities of the instrument. Given its 
high concentrations in human breath, CO2 is easily detected and can 
therefore be used as an initial possible sign of life. If CO2 is detected, the 
more sophisticated aIMS detector and the aldehyde sensor can then be 
used to search for a signature reflecting human-specific VOCs. Hence, 

the combination of CO2 and volatile detectors (aldehyde sensor and 
aIMS) provides a highly specific analytical tool, with which first re
sponders or security personnel can detect the presence of trapped or 
hidden human beings with a high level of confidence. 

Altogether 1240 measurements of outside air, 430 measurements of 
air inside an empty sealed interior such as a small room, container, car, 
transporter, and 1023 air measurements with human beings present in a 
closed area were acquired using the protocol described above. These 
measurement were used for training and the evaluation of the software 
algorithms for separation of people present in a closed volume (group 1) 
and closed volume without humans (group 2). 

The result of the algorithms is a classification score ranging between 
0 and 1. Note that this number does not represent a probability, but a 
likelihood. A higher score means a greater likelihood of a true positive 
(chance of a person present being correctly detected) and lower likeli
hood of a false negative (risk of a wrong non-detection). 

Fig. 4 provides an example of readout values obtained when using 
the protocol described above in the field, resulting from measurements 
of air inside and outside a container, with two people sitting inside at 
two different times, with a suitable ventilation break between the two. 
This demonstrates the reproducibility of the measurements. 

Values determined from the measurements alternating between in
side and outside air show that 90 seconds is a sufficient time for all three 
steps, including air sampling, reproducibility measurements and rinsing 
out the air sample. The measurements of the surrounding air outside 
show classification scores that are much lower, nearly constant, as 
compared to those measured in the car during the whole procedure. The 
intensities calculated for the inside air increase in the first 10–15 mi
nutes and then reach a more stable value. 

In the field, a fast and clear analytical decision is required that alerts 
security personnel that hidden people might be present. Therefore, score 
values above the threshold is converted to a red light on the display of 
the handheld device, whereas score value below the threshold are 
converted to green light, which indicates no hidden people. This deci
sion is made by comparing the classification number with a pre- 
determined threshold from the training data (Fig. 4). The threshold 
value is based on the receiver operating characteristic (ROC) curve [28]. 
From the experiments we determined that threshold values ranging from 
0.3 to 0.4 are sufficient, giving excellent results as seen in the almost 
perfect ROC curve shown in Fig. 5a (based on the data set achieved from 
the trained case). However, in everyday practice it may be necessary to 
adjust the threshold to accommodate for deviations from the trained 
data set. For each threshold, sensitivity (rate of positively detecting 
people controlling the rate of missed detections) and specificity (rate of 
correct no-alarm controlling the rate of false alarms) are estimated. An 
acceptable combination of these two values can be chosen and the 
corresponding threshold selected. Sensitivity can be improved only at 
the cost of specificity, and vice versa. This decision needs to be made 
strategically, namely by judging current risks and weighing the cost of 
false alarms and failed detection. In the training data set the classifica
tion works extremely well (Fig. 4, left), so that values from 0.3 – 0.4 
deliver perfect scores (giving a value of almost 1.0) for sensitivity. 
However, when applied to an untrained situation (for example, Fig. 4, 
right) both qualities depend on the threshold sensitivity. In this example, 
a sensitivity and specificity of 0.8 are simultaneously achieved. 

Fig. 5 (a) shows the ROC curve based on the validation data for the 
trained case (according to the experimental protocol described in Sec
tion 2.4 without any organic background emissions providing 
cofounding signals, such as from vegetables, fruits, etc.). In this scenario, 
the area under the curve (AUC) is greater than 0.999, which means the 
classification is almost perfect. For the untrained case, displayed in 
Fig. 6 (such as inspected trucks with any delivered goods including 
containers filled with vegetables), the AUC is around 0.9 with a sensi
tivity and specificity of 80% each. However, this result can be improved 
with additional measurements when following two different strategies. 
On the one hand, the classification number can be trained for all possible 

Table 1 
Detection limits for the ten selected VOCs for the aldehyde sensor and aIMS. This 
illustrates the need for the combination of the two analytical devices for use in 
the field device to detect hidden people.  

VOC Detection Limits Aldehyde Sensor Detection Limits 
aIMS 

Acetaldehyde 25.8 ppb > 50 ppb 
Propanol 7.0 ppb > 100 ppb 
Hexanal 4.9 ppb > 50 ppb 
Heptanal 13.8 ppb > 50 ppb 
Octanal 8.2 ppb > 50 ppb 
Nonanal 14.9 ppb > 50 ppb 
Acetone > 500 ppb 2 ppb 
Acetic acid > 500 ppb > 50 ppb 
6-Methyl-5-hepten-2-one 5.0 ppb 1.5 ppb 
Isoprene 8.5 ppb > 200 ppb  
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transported products, which means very large numbers of measure
ments and unrealistic goals for the system; for instance, it should 
recognise the delivered wares from their smell, exclusively, or the type 
of container to be sampled. On the other hand, a more practicable way 
would be to determine a series of classifiers for typical scenarios, from 
which the right one can be selected at the inspection point. In practice, 
the working point at the ROC curve has to be selected in such a way that 
the costs and efforts of the inspection action are optimised. For this 
purpose, the ratio of positive to negative results and the ratio of false- 
positive to false-negative results should be considered (e.g. if large 
numbers of containers are to be inspected in one day, sensitivity can be 
lowered in order to save time and money, because the prototype human 

scent analyser has such a high success rate). 
The work described in this paper is a result of collaboration between 

the Institute for Breath Research at the University of Innsbruck, the 
Austrian Federal Ministry of National Defense and Sports, the Austrian 
Federal Ministry of the Interior, Ionicon Analytik GmbH and Austrian 
Johanniter Unfall-Hilfe. Such an intersectoral approach provides 
important input into the application-oriented research and takes into 
account social and ethical issues. Importantly, it ensures that the 
developed portable device is designed according to user requirements 
and that it can be readily adapted for use with other detection methods 
currently in the field. 

Fig. 4. Classification numbers calculated during alternating measurement of the air inside (shaded columns) and outside (unshaded columns) a container with two 
people sitting inside. 

Fig. 5. (a) ROC curve for the trained case (people in a closed room or a container without organic materials transported), and (b) threshold range 0.3-0.4 is ideal for 
an almost perfect ROC curve (AUC~1). 
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