67 research outputs found

    Design and realization of a sputter deposition system for the \textit{in situ-} and \textit{in operando-}use in polarized neutron reflectometry experiments

    Full text link
    We report on the realization of a sputter deposition system for the in situ- and in operando-use in polarized neutron reflectometry experiments. Starting with the scientific requirements, which define the general design considerations, the external limitations and boundaries imposed by the available space at a neutron beamline and by the neutron and vacuum compatibility of the used materials, are assessed. The relevant aspects are then accounted for in the realization of our highly mobile deposition system, which was designed with a focus on a quick and simple installation and removability at the beamline. Apart from the general design, the in-vacuum components, the auxiliary equipment and the remote control via a computer, as well as relevant safety aspects are presented in detail.Comment: Submitted for publication in Nuclear Inst. and Methods in Physics Research, A. (1st revised version

    Hetero-epitaxial EuO Interfaces Studied by Analytic Electron Microscopy

    Full text link
    With nearly complete spin polarization, the ferromagnetic semiconductor europium monoxide could enable next-generation spintronic devices by providing efficient ohmic spin injection into silicon. Spin injection is greatly affected by the quality of the interface between the injector and silicon. Here, we use atomic-resolution scanning transmission electron microscopy in conjunction with electron energy loss spectroscopy to directly image and chemically characterize a series of EuO|Si and EuO|YAlO3 interfaces fabricated using different growth conditions. We identify the presence of europium silicides and regions of disorder at the EuO|Si interfaces, imperfections that could significantly reduce spin injection efficiencies via spin-flip scattering

    High-quality EuO thin films the easy way via topotactic transformation

    Get PDF
    Epitaxy is widely employed to create highly oriented crystalline films. A less appreciated, butnonetheless powerful means of creating such films is via topotactic transformation, in which achemical reaction transforms a single crystal of one phase into a single crystal of a differentphase, which inherits its orientation from the original crystal. Topotactic reactions may beapplied to epitactic films to substitute, add or remove ions to yield epitactic films of differentphases. Here we exploit a topotactic reduction reaction to provide a non-ultra-high vacuum(UHV) means of growing highly oriented single crystalline thin films of the easily overoxidizedhalf-metallic semiconductor europium monoxide (EuO) with a perfection rivallingthat of the best films of the same material grown by molecular-beam epitaxy or UHV pulsedlaserdeposition. As the technique only requires high-vacuum deposition equipment, it hasthe potential to drastically improve the accessibility of high-quality single crystalline films ofEuO as well as other difficult-to-synthesize compounds

    The potential for inhaled treprostinil in the treatment of pulmonary arterial hypertension

    No full text
    Inhaled treprostinil is a safe and well-tolerated approved pharmaceutical for the treatment of pulmonary arterial hypertension. In a series of open-label studies and in the pivotal trial with 253 patients, this long-acting prostacyclin analogue demonstrated pronounced pulmonary selectivity of vasodilatory effects, improved physical capacity and excellent tolerability and safety following aerosol administration. For efficient treatment, only four daily inhalations of treprostinil are necessary compared with six to nine in iloprost aerosol therapy. This review describes in detail the development of inhaled treprostinil, starting with intravenous epoprostenol followed by inhaled iloprost and subcutaneous treprostinil, all three representing well-established and widely approved prostanoid therapies for pulmonary hypertension. In order to circumvent the drawbacks of intravenous epoprostenol, stable prostacyclin analogues with similar pharmacological properties have been investigated. In addition, alternative routes of administration have been proposed and evaluated, mainly inhaled and subcutaneous delivery. The concept of inhaled treprostinil was to combine the pulmonary selectivity of an aerosolized vasodilator with the long-acting effects of a stable prostacyclin analogue. Pulmonary arterial hypertension remains, however, a severe, life-threatening disease, in spite of the enormous progress in specific drug therapy over the last decade. Therefore, further improvement of drug therapy will be essential, with clear potential for inhaled treprostinil: a reduction of inhalation frequency and duration would markedly improve quality of life and compliance, and a longer-lasting local prostanoid effect might further enhance the efficacy of inhaled treprostinil. The advantageous pharmacological properties of treprostinil offer the opportunity to establish a convenient metered dose inhaler as a delivery system, to combine inhaled treprostinil with available or future drugs for pulmonary arterial hypertension, or to develop sustained release formulations of treprostinil suitable for inhalation based on liposomes or biodegradable nanoparticles

    Evaluating the Controlled Release Properties of Inhaled Nanoparticles Using Isolated, Perfused, and Ventilated Lung Models

    No full text
    Polymeric nanoparticles meet the increasing interest for inhalation therapy and hold great promise to improve controlled drug delivery to the lung. The synthesis of tailored polymeric materials and the improvement of nanoparticle preparation techniques facilitate new perspectives for the treatment of severe pulmonary diseases. The physicochemical properties of such drug delivery systems can be investigated using conventional analytical procedures. However, the assessment of the controlled drug release properties of polymeric nanoparticles in the lung remains a considerable challenge. In this context, the isolated lung technique is a promising tool to evaluate the drug release characteristics of nanoparticles intended for pulmonary application. It allows measurements of lung-specific effects on the drug-release properties of pulmonary delivery systems. Ex vivo models are thought to overcome the common obstacles of in vitro tests and offer more reliable drug release and distribution data that are closer to the in vivo situation

    Cascaded Pumping Cycle Control for Rigid Wing Airborne Wind Energy Systems

    No full text
    Airborne wind energy is an emerging technology that uses tethered unmanned aerial vehicles for harvesting wind energy at altitudes higher than conventional towered wind turbines. To make the technology competitive to other renewable energy technologies a reliable control system is required that allows autonomously operating the system throughout all phases of flight. In the present work a cascaded nonlinear control scheme for reliable pumping cycle control of a rigid wing airborne wind energy system is proposed. The high-level control strategy in the form of a state machine as well as the flight controller consisting of path-following guidance and control, attitude, and rate loop is presented along with a winch controller for tether force tracking. Amathematical model for an existing prototype will be derived, and results from a simulation study will be used to demonstrate the robustness of the proposed concept in the presence of turbulence and wind gusts.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Wind Energ
    • …
    corecore