22,446 research outputs found

    A Lesson in Scaling 6LoWPAN -- Minimal Fragment Forwarding in Lossy Networks

    Full text link
    This paper evaluates two forwarding strategies for fragmented datagrams in the IoT: hop-wise reassembly and a minimal approach to directly forward fragments. Minimal fragment forwarding is challenged by the lack of forwarding information at subsequent fragments in 6LoWPAN and thus requires additional data at nodes. We compared the two approaches in extensive experiments evaluating reliability, end-to-end latency, and memory consumption. In contrast to previous work and due to our alternate setup, we obtained different results and conclusions. Our findings indicate that direct fragment forwarding should be deployed only with care, since higher packet transmission rates on the link-layer can significantly reduce its reliability, which in turn can even further reduce end-to-end latency because of highly increased link-layer retransmissions.Comment: If you cite this paper, please use the LCN reference: M. S. Lenders, T. C. Schmidt, M. W\"ahlisch. "A Lesson in Scaling 6LoWPAN - Minimal Fragment Forwarding in Lossy Networks." in Proc. of IEEE LCN, 201

    Accuracy of Patient-Specific Organ Dose Estimates Obtained Using an Automated Image Segmentation Algorithm

    Get PDF
    The overall goal of this work is to develop a rapid, accurate, and automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using simulations to generate dose maps combined with automated segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. We hypothesized that the autosegmentation algorithm is sufficiently accurate to provide organ dose estimates, since small errors delineating organ boundaries will have minimal effect when computing mean organ dose. A leave-one-out validation study of the automated algorithm was performed with 20 head-neck CT scans expertly segmented into nine regions. Mean organ doses of the automatically and expertly segmented regions were computed from Monte Carlo-generated dose maps and compared. The automated segmentation algorithm estimated the mean organ dose to be within 10% of the expert segmentation for regions other than the spinal canal, with the median error for each organ region below 2%. In the spinal canal region, the median error was -7%, with a maximum absolute error of 28% for the single-atlas approach and 11% for the multiatlas approach. The results demonstrate that the automated segmentation algorithm can provide accurate organ dose estimates despite some segmentation errors

    Low-metallicity star formation: Relative impact of metals and magnetic fields

    Full text link
    Low-metallicity star formation poses a central problem of cosmology, as it determines the characteristic mass scale and distribution for the first and second generations of stars forming in our Universe. Here, we present a comprehensive investigation assessing the relative impact of metals and magnetic fields, which may both be present during low-metallicity star formation. We show that the presence of magnetic fields generated via the small-scale dynamo stabilises the protostellar disc and provides some degree of support against fragmentation. In the absence of magnetic fields, the fragmentation timescale in our model decreases by a factor of ~10 at the transition from Z=0 to Z>0, with subsequently only a weak dependence on metallicity. Similarly, the accretion timescale of the cluster is set by the large-scale dynamics rather than the local thermodynamics. In the presence of magnetic fields, the primordial disc can become completely stable, therefore forming only one central fragment. At Z>0, the number of fragments is somewhat reduced in the presence of magnetic fields, though the shape of the mass spectrum is not strongly affected in the limits of the statistical uncertainties. The fragmentation timescale, however, increases by roughly a factor of 3 in the presence of magnetic fields. Indeed, our results indicate comparable fragmentation timescales in primordial runs without magnetic fields and Z>0 runs with magnetic fields.Comment: MNRAS in pres

    Braiding of Majorana bound states in a driven-dissipative Majorana box setup

    Full text link
    We investigate a system of Majorana box qubits, where each of the Coulomb blockaded boxes is driven by an applied AC voltage and is embedded in a dissipative environment. The AC voltage is applied between a pair of quantum dots, each of which is coupled by tunneling to a Majorana box qubit. Moreover, the dissipation is created by the coupling to an electromagnetic environment. Recent work has shown that in this case the Majorana bound states which form the computational basis can emerge as dark states, which are stabilized by the dissipation. In our work, we show that the same platform can be used to enable topological braiding of these dissipative Majorana bound states. We show that coupling three such Majorana boxes allows a braiding transformation by changing the tunnel amplitudes adiabatically in time.Comment: 16 pages, 4 figure

    A convenient Keldysh contour for thermodynamically consistent perturbative and semiclassical expansions

    Full text link
    The work fluctuation theorem (FT) is a symmetry connecting the moment generating functions (MGFs) of the work extracted in a given process and in its time-reversed counterpart. We show that, equivalently, the FT for work in isolated quantum systems can be expressed as an invariance property of a modified Keldysh contour. Modified contours can be used as starting points of perturbative and path integral approaches to quantum thermodynamics, as recently pointed out in the literature. After reviewing the derivation of the contour-based perturbation theory, we use the symmetry of the modified contour to show that the theory satisfies the FT at every order. Furthermore, we extend textbook diagrammatic techniques to the computation of work MGFs, showing that the contributions of the different Feynman diagrams can be added to obtain a general expression of the work statistics in terms of a sum of independent rescaled Poisson processes. In this context, the FT takes the form of a detailed balance condition linking every Feynman diagram with its time-reversed variant. In the second part, we study path integral approaches to the calculation of the MGF, and discuss how the arbitrariness in the choice of the contour impacts the final form of the path integral action. In particular, we show how using a symmetrized contour makes it possible to easily generalize the Keldysh rotation in the context of work statistics, a procedure paving the way to a semiclassical expansion of the work MGF. Furthermore, we use our results to discuss a generalization of the detailed balance conditions at the level of the quantum trajectories.Comment: 45 pages, 6 figures. New version after the first round of review; minor corrections have been made, some new references have been added to the bibliograph

    Dilaton in a soft-wall holographic approach to mesons and baryons

    Full text link
    We discuss a holographic soft-wall model developed for the description of mesons and baryons with adjustable quantum numbers n, J, L, S. This approach is based on an action which describes hadrons with broken conformal invariance and which incorporates confinement through the presence of a background dilaton field. We show that in the case of the bound-state problem (hadronic mass spectrum) two versions of the model with a positive and negative dilaton profile are equivalent to each other by a special transformation of the bulk field. We also comment on recent works which discuss the dilaton sign in the context of soft-wall approaches.Comment: 21 pages, accepted for publication in Phys. Rev.

    ASASSN-16ae: A Powerful White-Light Flare on an Early-L Dwarf

    Full text link
    We report the discovery and classification of SDSS~J053341.43+001434.1 (SDSS0533), an early-L dwarf first discovered during a powerful ΔV<−11\Delta V < -11 magnitude flare observed as part of the ASAS-SN survey. Optical and infrared spectroscopy indicate a spectral type of L0 with strong Hα\alpha emission and a blue NIR spectral slope. Combining the photometric distance, proper motion, and radial velocity of SDSS0533 yields three-dimensional velocities of (U,V,W)=(14±13,−35±14,−94±22)(U,V,W)=(14\pm13,-35\pm14,-94\pm22)~km~s−1^{-1}, indicating that it is most likely part of the thick disk population and probably old. The three detections of SDSS0533 obtained during the flare are consistent with a total VV-band flare energy of at least 4.9×10334.9\times10^{33}~ergs (corresponding to a total thermal energy of at least Etot>3.7×1034E_{\rm tot}>3.7\times10^{34}~erg), placing it among the strongest detected M dwarf flares. The presence of this powerful flare on an old L0 dwarf may indicate that stellar-type magnetic activity persists down to the end of the main sequence and on older ML transition dwarfs.Comment: 7 pages, 3 tables, 2 figures; accepted to ApJ Letters; updated to reflect referee response and proof correction
    • …
    corecore