99 research outputs found

    D-β-Hydroxybutyrate Is Protective in Mouse Models of Huntington's Disease

    Get PDF
    Abnormalities in mitochondrial function and epigenetic regulation are thought to be instrumental in Huntington's disease (HD), a fatal genetic disorder caused by an expanded polyglutamine track in the protein huntingtin. Given the lack of effective therapies for HD, we sought to assess the neuroprotective properties of the mitochondrial energizing ketone body, D-β-hydroxybutyrate (DβHB), in the 3-nitropropionic acid (3-NP) toxic and the R6/2 genetic model of HD. In mice treated with 3-NP, a complex II inhibitor, infusion of DβHB attenuates motor deficits, striatal lesions, and microgliosis in this model of toxin induced-striatal neurodegeneration. In transgenic R6/2 mice, infusion of DβHB extends life span, attenuates motor deficits, and prevents striatal histone deacetylation. In PC12 cells with inducible expression of mutant huntingtin protein, we further demonstrate that DβHB prevents histone deacetylation via a mechanism independent of its mitochondrial effects and independent of histone deacetylase inhibition. These pre-clinical findings suggest that by simultaneously targeting the mitochondrial and the epigenetic abnormalities associated with mutant huntingtin, DβHB may be a valuable therapeutic agent for HD

    Cytokine Production by Leukocytes of Military Personnel with Depressive Symptoms after Deployment to a Combat-Zone: A Prospective, Longitudinal Study

    Get PDF
    Major depressive disorder (MDD) is frequently diagnosed in military personnel returning from deployment. Literature suggests that MDD is associated with a pro-inflammatory state. To the best of our knowledge, no prospective, longitudinal studies on the association between development of depressive symptomatology and cytokine production by peripheral blood leukocytes have been published. The aim of this study was to investigate whether the presence of depressive symptomatology six months after military deployment is associated with the capacity to produce cytokines, as assessed before and after deployment. 1023 military personnel were included before deployment. Depressive symptoms and LPS- and T-cell mitogen-induced production of 16 cytokines and chemokines in whole blood cultures were measured before (T0), 1 (T1), and 6 (T2) months after return from deployment. Exploratory structural equation modeling (ESEM) was used for data reduction into cytokine patterns. Multiple group latent growth modeling was used to investigate differences in the longitudinal course of cytokine production between individuals with (n = 68) and without (n = 665) depressive symptoms at T2. Individuals with depressive symptoms after deployment showed higher T-cell cytokine production before deployment. Moreover, pre-deployment T-cell cytokine production significantly predicted the presence of depressive symptomatology 6 months after return. There was an increase in T-cell cytokine production over time, but this increase was significantly smaller in individuals developing depressive symptoms. T-cell chemokine and LPS-induced innate cytokine production decreased over time and were not associated with depressive symptoms. These results indicate that increased T-cell mitogen-induced cytokine production before deployment may be a vulnerability factor for development of depressive symptomatology in response to deployment to a combat-zone. In addition, deployment to a combat-zone affects the capacity of T-cells and monocytes to produce cytokines and chemokines until at least 6 months after return

    Sequencing and timing of strategic responses after industry disruption: evidence from post-deregulation competition in the U.S. railroad industry

    Get PDF
    This paper examines the sequencing and timing of firms’ strategic responses after significant industry disruption. We show that it is not the single strategic choice or response per se, but the sequencing and patterns of consecutive strategic responses that drive a firm’s adaptation and survival in the aftermath of a shift in the industry. We find that firms’ renewal efforts involved differential adaptability in finding balance at the juxtaposition of responding to demand-side pressures and choosing a path of new capability acquisition efficiently. Our study underscores the importance of taking a sequencing approach to studying strategic responses to industry disruption

    Creative Thinking and Modelling for the Decision Support in Water Management

    Full text link

    Tandem Diels−Alder N

    No full text
    • …
    corecore