78 research outputs found

    Short-term variability and mass loss in Be stars II. Physical taxonomy of photometric variability observed by the Kepler spacecraft

    Full text link
    Context: [abbreviated] Aims: Kepler data of three known Be stars are re-visited to establish their pulsational nature and assess the properties of additional, non-pulsational variations. The three program stars turned out to be one inactive Be star, one active, continuously outbursting Be star, and one Be star transiting from a non-outbursting into an outbursting phase, thus forming an excellent sample to distill properties of Be stars in the various phases of their life-cycle. Methods: [abbreviated] Results: The short-term photometric variability of Be stars must be disentangled into a stellar and a circumstellar part. The stellar part is on the whole not different from what is seen in non-Be stars. However, some of the observed phenomena might be to be due to resonant mode coupling, a mechanism not typically considered for B-type stars. Short-term circumstellar variability comes in the form of either a group of relatively well-defined, short-lived frequencies during outbursts, which are called \v{S}tefl frequencies, and broad bumps in the power spectra, indicating aperiodic variability on a time scale similar to typical low-order gg-mode pulsation frequencies, rather than true periodicity. Conclusions: From a stellar pulsation perspective, Be stars are rapidly rotating SPB stars, that is they pulsate in low order gg-modes, even if the rapid rotation can project the observed frequencies into the traditional high-order pp-mode regime above about 4 c/d. However, when a circumstellar disk is present, Be star power spectra are complicated by both cyclic, or periodic, and aperiodic circumstellar phenomena, possibly even dominating the power spectrum.Comment: Accepted by Astronomy and Astrophysic

    Long Baseline Interferometry of Be Stars

    Full text link
    We give an introduction to interferometrical concepts and their applicability to Be stars. The first part of the paper concentrates on a short historic overview and basic principles of two-beam interferometric observations. In the second part, the VLTI/MIDI instrument is introduced and its first results on Be stars, obtained on alpha Ara and delta Cen, are outlined.Comment: To appear in proceedings of the Astronomische Gesellshaft meeting, 200

    The resonant B1II+B1II binary BI108

    Full text link
    BI108 is a luminous variable star in the Large Magellanic Cloud classified B1II. The variability consists of two resonant periods (3:2), of which only one is orbital, however. We discuss possible mechanisms responsible for the second period and its resonant locking.Comment: 2 pages, 1 figure, IAUS 272 - Active OB Stars: Structure, Evolution, Mass Loss and Critical Limit
    • …
    corecore