5 research outputs found

    Kinetic Limitation to Inorganic Ion Diffusivity and to Coalescence of Inorganic Inclusions in Viscous Liquid–Liquid Phase-Separated Particles

    No full text
    Mixed organic/inorganic aerosols may undergo liquid–liquid phase separation (LLPS) when the relative humidity drops in the atmosphere. Phase-separated particles adopt different morphologies, which will have different consequences for atmospheric chemistry and climate. Recent laboratory studies on submicron particles led to speculation whether LLPS observed for larger drops might actually be suppressed in smaller droplets. Here, we report on micron-sized droplets of a ternary mixture of ammonium sulfate (AS), carminic acid, and water at different temperatures, which were exposed to typical atmospheric drying rates ranging from 0.34 to 5.0% RH min<sup>–1</sup>. Our results reveal that increasing the drying rate and lowering the temperature results in different morphologies after LLPS and may suppress the growth and coalescence of the inorganic-rich phase inclusions due to kinetic limitations in a viscous matrix. The coalescence time was used to estimate the viscosity of the organic-rich phase within a factor of 20, and based on the Stokes–Einstein relationship, we estimated AS diffusivity. Furthermore, we evaluated the initial growth of inclusions to quantitatively determine the AS diffusivity in the organic-rich phase, which is about 10<sup>–8</sup> cm<sup>2</sup> s<sup>–1</sup> at room temperature. Extrapolation of diffusivity to lower temperatures using estimations for the diffusion activation energy leads us to conclude that the growth of the inorganic phase is not kinetically impeded for tropospheric submicron particles larger than 100 nm

    Kinetic Limitation to Inorganic Ion Diffusivity and to Coalescence of Inorganic Inclusions in Viscous Liquid–Liquid Phase-Separated Particles

    No full text
    Mixed organic/inorganic aerosols may undergo liquid–liquid phase separation (LLPS) when the relative humidity drops in the atmosphere. Phase-separated particles adopt different morphologies, which will have different consequences for atmospheric chemistry and climate. Recent laboratory studies on submicron particles led to speculation whether LLPS observed for larger drops might actually be suppressed in smaller droplets. Here, we report on micron-sized droplets of a ternary mixture of ammonium sulfate (AS), carminic acid, and water at different temperatures, which were exposed to typical atmospheric drying rates ranging from 0.34 to 5.0% RH min<sup>–1</sup>. Our results reveal that increasing the drying rate and lowering the temperature results in different morphologies after LLPS and may suppress the growth and coalescence of the inorganic-rich phase inclusions due to kinetic limitations in a viscous matrix. The coalescence time was used to estimate the viscosity of the organic-rich phase within a factor of 20, and based on the Stokes–Einstein relationship, we estimated AS diffusivity. Furthermore, we evaluated the initial growth of inclusions to quantitatively determine the AS diffusivity in the organic-rich phase, which is about 10<sup>–8</sup> cm<sup>2</sup> s<sup>–1</sup> at room temperature. Extrapolation of diffusivity to lower temperatures using estimations for the diffusion activation energy leads us to conclude that the growth of the inorganic phase is not kinetically impeded for tropospheric submicron particles larger than 100 nm

    Kinetic Limitation to Inorganic Ion Diffusivity and to Coalescence of Inorganic Inclusions in Viscous Liquid–Liquid Phase-Separated Particles

    No full text
    Mixed organic/inorganic aerosols may undergo liquid–liquid phase separation (LLPS) when the relative humidity drops in the atmosphere. Phase-separated particles adopt different morphologies, which will have different consequences for atmospheric chemistry and climate. Recent laboratory studies on submicron particles led to speculation whether LLPS observed for larger drops might actually be suppressed in smaller droplets. Here, we report on micron-sized droplets of a ternary mixture of ammonium sulfate (AS), carminic acid, and water at different temperatures, which were exposed to typical atmospheric drying rates ranging from 0.34 to 5.0% RH min<sup>–1</sup>. Our results reveal that increasing the drying rate and lowering the temperature results in different morphologies after LLPS and may suppress the growth and coalescence of the inorganic-rich phase inclusions due to kinetic limitations in a viscous matrix. The coalescence time was used to estimate the viscosity of the organic-rich phase within a factor of 20, and based on the Stokes–Einstein relationship, we estimated AS diffusivity. Furthermore, we evaluated the initial growth of inclusions to quantitatively determine the AS diffusivity in the organic-rich phase, which is about 10<sup>–8</sup> cm<sup>2</sup> s<sup>–1</sup> at room temperature. Extrapolation of diffusivity to lower temperatures using estimations for the diffusion activation energy leads us to conclude that the growth of the inorganic phase is not kinetically impeded for tropospheric submicron particles larger than 100 nm

    European Emissions of Halogenated Greenhouse Gases Inferred from Atmospheric Measurements

    No full text
    European emissions of nine representative halocarbons (CFC-11, CFC-12, Halon 1211, HCFC-141b, HCFC-142b, HCFC-22, HFC-125, HFC-134a, HFC-152a) are derived for the year 2009 by combining long-term observations in Switzerland, Italy, and Ireland with campaign measurements from Hungary. For the first time, halocarbon emissions over Eastern Europe are assessed by top-down methods, and these results are compared to Western European emissions. The employed inversion method builds on least-squares optimization linking atmospheric observations with calculations from the Lagrangian particle dispersion model FLEXPART. The aggregated halocarbon emissions over the study area are estimated at 125 (106–150) Tg of CO<sub>2</sub> equiv/y, of which the hydrofluorocarbons (HFCs) make up the most important fraction with 41% (31–52%). We find that chlorofluorocarbon (CFC) emissions from banks are still significant and account for 35% (27–43%) of total halocarbon emissions in Europe. The regional differences in per capita emissions are only small for the HFCs, while emissions of CFCs and hydrochlorofluorocarbons (HCFCs) tend to be higher in Western Europe compared to Eastern Europe. In total, the inferred per capita emissions are similar to estimates for China, but 3.5 (2.3–4.5) times lower than for the United States. Our study demonstrates the large benefits of adding a strategically well placed measurement site to the existing European observation network of halocarbons, as it extends the coverage of the inversion domain toward Eastern Europe and helps to better constrain the emissions over Central Europe

    Easy to Apply Polyoxazoline-Based Coating for Precise and Long-Term Control of Neural Patterns

    No full text
    Arranging cultured cells in patterns via surface modification is a tool used by biologists to answer questions in a specific and controlled manner. In the past decade, bottom-up neuroscience emerged as a new application, which aims to get a better understanding of the brain via reverse engineering and analyzing elementary circuitry in vitro. Building well-defined neural networks is the ultimate goal. Antifouling coatings are often used to control neurite outgrowth. Because erroneous connectivity alters the entire topology and functionality of minicircuits, the requirements are demanding. Current state-of-the-art coating solutions such as widely used poly­(l-lysine)-<i>g</i>-poly­(ethylene glycol) (PLL-<i>g</i>-PEG) fail to prevent primary neurons from making undesired connections in long-term cultures. In this study, a new copolymer with greatly enhanced antifouling properties is developed, characterized, and evaluated for its reliability, stability, and versatility. To this end, the following components are grafted to a poly­(acrylamide) (PAcrAm) backbone: hexaneamine, to support spontaneous electrostatic adsorption in buffered aqueous solutions, and propyldimethylethoxysilane, to increase the durability via covalent bonding to hydroxylated culture surfaces and antifouling polymer poly­(2-methyl-2-oxazoline) (PMOXA). In an assay for neural connectivity control, the new copolymer’s ability to effectively prevent unwanted neurite outgrowth is compared to the gold standard, PLL-<i>g</i>-PEG. Additionally, its versatility is evaluated on polystyrene, glass, and poly­(dimethylsiloxane) using primary hippocampal and cortical rat neurons as well as C2C12 myoblasts, and human fibroblasts. PAcrAm-<i>g</i>-(PMOXA, NH<sub>2</sub>, Si) consistently outperforms PLL-<i>g</i>-PEG with all tested culture surfaces and cell types, and it is the first surface coating which reliably prevents arranged nodes of primary neurons from forming undesired connections over the long term. Whereas the presented work focuses on the proof of concept for the new antifouling coating to successfully and sustainably prevent unwanted connectivity, it is an important milestone for in vitro neuroscience, enabling follow-up studies to engineer neurologically relevant networks. Furthermore, because PAcrAm-<i>g</i>-(PMOXA, NH<sub>2</sub>, Si) can be quickly applied and used with various surfaces and cell types, it is an attractive extension to the toolbox for in vitro biology and biomedical engineering
    corecore