18 research outputs found

    Indian Gooseberry-Derived Tunable Fluorescent Carbon Dots as a Promise for In Vitro/In Vivo Multicolor Bioimaging and Fluorescent Ink

    No full text
    We report the synthesis of eco-friendly fluorescent nitrogen-doped carbon dots (NCDs) using the renewable resource of Phyllanthus emblica juice as a precursor by the hydrothermal process at 200 °C for 12 h. The synthesized NCDs emitted bright fluorescence without any pretreatment of the sample under the excitation of UV light and exhibited excitation-dependent fluorescence emission. The NCDs have nitrogen-containing and oxygen-containing functional groups such as amino, hydroxyl, and carboxyl on the surface of the carbon structure. Furthermore, the NCDs exhibited excellent water dispersibility with prolonging stability and good biocompatibility. On the basis of the good optical properties, the NCDs have potentially been used as a promising staining agent on HCT-116 human colon cancer cells and Caenorhabditis elegans (nematodes) for multicolor cellular imaging. In the cell cytoplasm, the NCDs showed rapid uptake and high cytocompatibility on cellular morphology with bright fluorescence emission. Furthermore, the NCDs were used as fluorescent ink for writing and drawing with anticoagulation. In addition, the NCDs were significantly utilized as a fluorescent ink for thumb impression, which glows instantly under the illumination of UV light and does not require a secondary treatment. Hence, the synthesized NCDs can be used as ideal multicolor fluorescent probes for bioimaging applications and as fluorescent ink instead of traditional fluorescent ink

    Green-Routed Carbon Dot-Adorned Silver Nanoparticles for the Catalytic Degradation of Organic Dyes

    No full text
    Herein, a simple, cost-effective, and in-situ environmentally friendly approach was adopted to synthesize carbon dot-adorned silver nanoparticles (CDs@AgNPs) from yellow myrobalan (Terminalia chebula) fruit using a hydrothermal treatment without any additional reducing and or stabilizing agents. The as-synthesized CDs@AgNP composite was systematically characterized using multiple analytical techniques: FESEM, TEM, XRD, Raman, ATR-FTIR, XPS, and UV-vis spectroscopy. All the results of the characterization techniques strongly support the idea that the CDs were successfully made to adorn the AgNPs. This effectively synthesized CDs@AgNP composite was applied as a catalyst for the degradation of organic dyes, including methylene blue (MB) and methyl orange (MO). The degradation results revealed that CDs@AgNPs exhibit a superior catalytic activity in the degradation of MB and MO in the presence of NaBH4 (SB) under ambient temperatures. In total, 99.5 and 99.0% rates of degradation of MB and MO were observed using CDs@AgNP composite with SB, respectively. A plausible mechanism for the reductive degradation of MB and MO is discussed in detail. Moreover, the CDs@AgNP composite has great potential for wastewater treatment applications

    Green-Routed Carbon Dot-Adorned Silver Nanoparticles for the Catalytic Degradation of Organic Dyes

    No full text
    Herein, a simple, cost-effective, and in-situ environmentally friendly approach was adopted to synthesize carbon dot-adorned silver nanoparticles (CDs@AgNPs) from yellow myrobalan (Terminalia chebula) fruit using a hydrothermal treatment without any additional reducing and or stabilizing agents. The as-synthesized CDs@AgNP composite was systematically characterized using multiple analytical techniques: FESEM, TEM, XRD, Raman, ATR-FTIR, XPS, and UV-vis spectroscopy. All the results of the characterization techniques strongly support the idea that the CDs were successfully made to adorn the AgNPs. This effectively synthesized CDs@AgNP composite was applied as a catalyst for the degradation of organic dyes, including methylene blue (MB) and methyl orange (MO). The degradation results revealed that CDs@AgNPs exhibit a superior catalytic activity in the degradation of MB and MO in the presence of NaBH4 (SB) under ambient temperatures. In total, 99.5 and 99.0% rates of degradation of MB and MO were observed using CDs@AgNP composite with SB, respectively. A plausible mechanism for the reductive degradation of MB and MO is discussed in detail. Moreover, the CDs@AgNP composite has great potential for wastewater treatment applications

    A Comprehensive Review on Biopolymer Mediated Nanomaterial Composites and Their Applications in Electrochemical Sensors

    No full text
    Biopolymers are an attractive green alternative to conventional polymers, owing to their excellent biocompatibility and biodegradability. However, their amorphous and nonconductive nature limits their potential as active biosensor material/substrate. To enhance their bio-analytical performance, biopolymers are combined with conductive materials to improve their physical and chemical characteristics. We review the main advances in the field of electrochemical biosensors, specifically the structure, approach, and application of biopolymers, as well as their conjugation with conductive nanomaterials, polymers, and metal oxides in green-based non-invasive analytical biosensors. In addition, we reviewed signal measurement, substrate bio-functionality, biochemical reaction, sensitivity, and limit of detection (LOD) of different biopolymers on various transducers. To date, pectin biopolymer, when conjugated with either gold nanoparticles, polypyrrole, reduced graphene oxide, or multiwall carbon nanotubes forming nanocomposites on glass carbon electrode transducer, tends to give the best LOD, highest sensitivity, and can detect multiple analytes/targets. This review will spur new possibilities for the use of biosensors for medical diagnostic tests

    Sustainable Synthesis of Bright Fluorescent Nitrogen-Doped Carbon Dots from <i>Terminalia chebula</i> for In Vitro Imaging

    No full text
    In this study, sustainable, low-cost, and environmentally friendly biomass (Terminalia chebula) was employed as a precursor for the formation of nitrogen-doped carbon dots (N-CDs). The hydrothermally assisted Terminalia chebula fruit-derived N-CDs (TC-CDs) emitted different bright fluorescent colors under various excitation wavelengths. The prepared TC-CDs showed a spherical morphology with a narrow size distribution and excellent water dispensability due to their abundant functionalities, such as oxygen- and nitrogen-bearing molecules on the surfaces of the TC-CDs. Additionally, these TC-CDs exhibited high photostability, good biocompatibility, very low toxicity, and excellent cell permeability against HCT-116 human colon carcinoma cells. The cell viability of HCT-116 human colon carcinoma cells in the presence of TC-CDs aqueous solution was calculated by MTT assay, and cell viability was higher than 95%, even at a higher concentration of 200 μg mL−1 after 24 h incubation time. Finally, the uptake of TC-CDs by HCT-116 human colon carcinoma cells displayed distinguished blue, green, and red colors during in vitro imaging when excited by three filters with different wavelengths under a laser scanning confocal microscope. Thus, TC-CDs could be used as a potential candidate for various biomedical applications. Moreover, the conversion of low-cost/waste natural biomass into products of value promotes the sustainable development of the economy and human society

    Smartphone-Operated Wireless Chemical Sensors: A Review

    No full text
    Wireless chemical sensors have been developed as a result of advances in chemical sensing and wireless communication technology. Because of their mobility and widespread availability, smartphones have been extensively combined with sensors such as hand-held detectors, sensor chips, and test strips for biochemical detection. Smartphones are frequently used as controllers, analyzers, and displayers for quick, authentic, and point-of-care monitoring, which may considerably streamline the design and lower the cost of sensing systems. This study looks at the most recent wireless and smartphone-supported chemical sensors. The review is divided into four different topics that emphasize the basic types of wireless smartphone-operated chemical sensors. According to a study of 114 original research publications published during recent years, market opportunities for wireless and smartphone-supported chemical sensor systems include environmental monitoring, healthcare and medicine, food quality, sport, and fitness. The issues and illustrations for each of the primary chemical sensors relevant to many application areas are covered. In terms of performance, the advancement of technologies related to chemical sensors will result in smaller and more lightweight, cost-effective, versatile, and durable devices. Given the limitations, we suggest that wireless and smartphone-supported chemical sensor systems play a significant role in the sensor Internet of Things

    Natural Nitrogen-Doped Carbon Dots Obtained from Hydrothermal Carbonization of Chebulic Myrobalan and Their Sensing Ability toward Heavy Metal Ions

    No full text
    Chebulic Myrobalan is the main ingredient in the Ayurvedic formulation Triphala, which is used for kidney and liver dysfunctions. Herein, natural nitrogen-doped carbon dots (NN-CDs) were prepared from the hydrothermal carbonization of Chebulic Myrobalan and were demonstrated to sense heavy metal ions in an aqueous medium. Briefly, the NN-CDs were developed from Chebulic Myrobalan by a single-step hydrothermal carbonization approach under a mild temperature (200 °C) without any capping and passivation agents. They were then thoroughly characterized to confirm their structural and optical properties. The resulting NN-CDs had small particles (average diameter: 2.5 ± 0.5 nm) with a narrow size distribution (1–4 nm) and a relatable degree of graphitization. They possessed bright and durable fluorescence with excitation-dependent emission behaviors. Further, the as-synthesized NN-CDs were a good fluorometric sensor for the detection of heavy metal ions in an aqueous medium. The NN-CDs showed sensitive and selective sensing platforms for Fe3+ ions; the detection limit was calculated to be 0.86 μM in the dynamic range of 5–25 μM of the ferric (Fe3+) ion concentration. Moreover, these NN-CDs could expand their application as a potential candidate for biomedical applications and offer a new method of hydrothermally carbonizing waste biomass

    Smartphone-Operated Wireless Chemical Sensors: A Review

    No full text
    Wireless chemical sensors have been developed as a result of advances in chemical sensing and wireless communication technology. Because of their mobility and widespread availability, smartphones have been extensively combined with sensors such as hand-held detectors, sensor chips, and test strips for biochemical detection. Smartphones are frequently used as controllers, analyzers, and displayers for quick, authentic, and point-of-care monitoring, which may considerably streamline the design and lower the cost of sensing systems. This study looks at the most recent wireless and smartphone-supported chemical sensors. The review is divided into four different topics that emphasize the basic types of wireless smartphone-operated chemical sensors. According to a study of 114 original research publications published during recent years, market opportunities for wireless and smartphone-supported chemical sensor systems include environmental monitoring, healthcare and medicine, food quality, sport, and fitness. The issues and illustrations for each of the primary chemical sensors relevant to many application areas are covered. In terms of performance, the advancement of technologies related to chemical sensors will result in smaller and more lightweight, cost-effective, versatile, and durable devices. Given the limitations, we suggest that wireless and smartphone-supported chemical sensor systems play a significant role in the sensor Internet of Things

    Highly Fluorescent Carbon Dots as a Potential Fluorescence Probe for Selective Sensing of Ferric Ions in Aqueous Solution

    No full text
    This paper’s emphasis is on the development of a fluorescent chemosensor for Fe3+ ions in an aqueous solution, using hydrophilic carbon dots (O-CDs). A simple, cost-effective, and environmentally friendly one-step hydrothermal synthesis method was used to synthesize fluorescent hydrophilic O-CDs from Oxalis corniculata (Family; Oxalidaceae). The graphitic structure and size distribution of the O-CDs was verified by X-ray diffraction, Raman spectroscopy, and high-resolution transmission electron microscopy studies. The resulting O-CDs had a near-spherical shape and an adequate degree of graphitization at the core, with an average diameter of 4.5 nm. X-ray photoelectron and Fourier transform infrared spectroscopy methods revealed the presence of several hydrophilic groups (carbonyl, amine, carboxyl, and hydroxyl, along with nitrogen and oxygen-rich molecules) on the surface of O-CDs. The synthesized hydrophilic O-CDs with excitation wavelength-dependent emission fluorescence characteristics showed a high quantum yield of about 20%. Besides this, the hydrophilic O-CDs exhibited a bright and controllable fluorescence with prolonged stability and photo-stability. These fluorescent hydrophilic O-CDs were used as a nanoprobe for the fluorometric identification of Fe3+ ions in an aqueous solution, with high sensitivity and selectivity. By quenching the blue emission fluorescence of this nanosensor, a highly sensitive Fe3+ ion in the range of 10–50 µM with a minimum detection limit of 0.73 µM was achieved. In addition, the developed nanosensor can be used to sense intracellular Fe3+ ions with high biocompatibility and cellular imaging capacity, and it has a lot of potential in biomedical applications

    Advanced opportunities and insights on the influence of nitrogen incorporation on the physico-/electro-chemical properties of robust electrocatalysts for electrocatalytic energy conversion

    Get PDF
    The use of a wide range of methods for incorporating nitrogen atoms on robust catalysts has given rise to fundamental advances in the field of energy conversion and storage. Recently, nitrogen incorporation has proven to be able to fine-tune the electron densities of exposed active sites to create high-performance electrocatalysts. The preservation of a strong interface between the local atomic coordination of nitrogen atoms on bare carbon, single metal atoms, transition metal oxides, metal chalcogenides, and MXenes during synthesis plays an important role in producing an efficient electrocatalysts. In addition, the ability of nitrogen atoms to bind with carbon or metal atoms can be influenced by processing conditions. In this regard, this review is the first comprehensive overview of the range of synthetic strategies to form nitrogen incorporated catalysts and assess their chemical, structural, physical electronic property modification and their influence on electrocatalytic ORR, OER, and HER performance. This review will describe how specific strategies have been utilized to realise effective electrocatalytic systems, including the energy conversion of nitrogen incorporated catalysts, structural coordination, and material optimization. Finally, the main challenges to be considered in future investigations in order to initiate new research efforts in this promising research area are discussed.</p
    corecore