9 research outputs found

    Association of vitamin K with cognitive decline and neuropathology in community‐dwelling older persons

    No full text
    Abstract Higher vitamin K intakes have been associated with better cognitive function, suggestive of a vitamin K mechanistic effect or simply reflective of a healthy diet. To test the hypothesis that brain vitamin K is linked to cognitive decline and dementia, vitamin K concentrations were measured in four brain regions, and their associations with cognitive and neuropathological outcomes were estimated in 325 decedents of the Rush Memory and Aging Project. Menaquinone‐4 (MK4) was the main vitamin K form in the brain regions evaluated. Higher brain MK4 concentrations were associated with a 17% to 20% lower odds of dementia or mild cognitive impairment (MCI) (P‐value < .014), with a 14% to 16% lower odds of Braak stage ≥IV (P‐value < 0.045), with lower Alzheimer's disease global pathology scores and fewer neuronal neurofibrillary tangles (P‐value < 0.012). These findings provide new and compelling evidence implicating vitamin K in neuropathology underlying cognitive decline and dementia

    Decreased cortical FADD protein is associated with clinical dementia and cognitive decline in an elderly community sample

    Get PDF
    Background: FADD (Fas-associated death domain) adaptor is a crucial protein involved in the induction of cell death but also mediates non-apoptotic actions via a phosphorylated form (p-Ser194-FADD). This study investigated the possible association of FADD forms with age-related neuropathologies, cognitive function, and the odds of dementia in an elderly community sample. Methods FADD forms were quantified by western blot analysis in dorsolateral prefrontal cortex (DLPFC) samples from a large cohort of participants in a community-based aging study (Memory and Aging Project, MAP), experiencing no-(NCI, n = 51) or mild-(MCI, n = 42) cognitive impairment, or dementia (n = 57). Results Cortical FADD was lower in subjects with dementia and lower FADD was associated with a greater load of amyloid-β pathology, fewer presynaptic terminal markers, poorer cognitive function and increased odds of dementia. Together with the observations of FADD redistribution into tangles and dystrophic neurites within plaques in Alzheimer’s disease brains, and its reduction in APP23 mouse cortex, the results suggest this multifunctional protein might participate in the mechanisms linking amyloid and tau pathologies during the course of the illness. Conclusions The present data suggests FADD as a putative biomarker for pathological processes associated with the course of clinical dementia.Medicine, Faculty ofNon UBCAnesthesiology, Pharmacology and Therapeutics, Department ofPsychiatry, Department ofReviewedFacult

    Loss of Munc18-1 long splice variant in GABAergic terminals is associated with cognitive decline and increased risk of dementia in a community sample

    Get PDF
    Background: Presynaptic terminals contribute to cognitive reserve, balancing the effects of age-related pathologies on cognitive function in the elderly. The presynaptic protein Munc18-1, alternatively spliced into long (M18L) or short (M18S) isoforms, is a critical modulator of neurotransmission. While subtle alterations in Munc18-1 have been shown to cause severe neuropsychiatric disorders with cognitive impairment, little information is known regarding the specific roles of Munc18-1 splice variants. We first investigated functional and anatomical features evidencing the divergent roles of M18L and M18S, and then evaluated their contribution to the full range of age-related cognitive impairment in the dorsolateral prefrontal cortex of a large sample of participants from a community-based aging study, including subjects with no-(NCI, n = 90), or mild-(MCI, n = 86) cognitive impairment, or with clinical dementia (n = 132). Finally, we used APP23 mutant mice to study the association between M18L/S and the time-dependent accumulation of common Alzheimer’s disease pathology. Results: Using isoform-specific antibodies, M18L was localized to the synaptosomal fraction, with a distribution matching lipid raft microdomains. M18S was found widely across cytosolic and synaptosomal compartments. Immunocytochemical studies identified M18L in perisomatic, GABAergic terminals, while M18S was broadly distributed in GABAergic and glutamatergic terminals. Using regression models taking into account multiple age-related pathologies, age, education and sex, global cognitive function was associated with the level of M18L (p = 0.006) but not M18S (p = 0.88). Mean M18L in dementia cases was 51 % lower than in NCI cases (p < 0.001), and each unit of M18L was associated with a lower likelihood of dementia (odds ratio = 0.68, 95 % confidence interval = 0.50–0.90, p = 0.008). In contrast, M18S balanced across clinical and pathologically diagnosed groups. M18L loss may not be caused by age-related amyloid pathology, since APP23 mice (12- and 22-months of age) had unchanged cortical levels of M18L/S compared with wild-type animals. Conclusions: M18L was localized to presynaptic inhibitory terminals, and was associated with cognitive function and protection from dementia in an elderly, community-based cohort. Lower M18L in inhibitory presynaptic terminals may be an early, independent contributor to cognitive decline.Medicine, Faculty ofOther UBCNon UBCAnesthesiology, Pharmacology and Therapeutics, Department ofPsychiatry, Department ofReviewedFacult

    Imaging and modeling of acute pressure-induced changes of collagen and elastin microarchitectures in pig and human resistance arteries

    Get PDF
    The impact of disease-related changes in the extracellular matrix (ECM) on the mechanical properties of human resistance arteries largely remains to be established. Resistance arteries from both pig and human parietal pericardium (PRA) display a different ECM microarchitecture compared with frequently used rodent mesenteric arteries. We hypothesized that the biaxial mechanics of PRA mirror pressure-induced changes in the ECM microarchitecture. This was tested using isolated pig PRA as a model system, integrating vital imaging, pressure myography, and mathematical modeling. Collagenase and elastase digestions were applied to evaluate the load-bearing roles of collagen and elastin, respectively. The incremental elastic modulus linearly related to the straightness of adventitial collagen fibers circumferentially and longitudinally (both R-2 &gt;= 0.99), whereas there was a nonlinear relationship to the internal elastic lamina elastin fiber branching angles. Mathematical modeling suggested a collagen recruitment strain (means +/- SE) of 1.1 +/- 0.2 circumferentially and 0.20 +/- 0.01 longitudinally, corresponding to a pressure of similar to 40 mmHg, a finding supported by the vital imaging. The integrated method was tested on human PRA to confirm its validity. These showed limited circumferential distensibility and elongation and a collagen recruitment strain of 0.8 +/- 0.1 circumferentially and 0.06 +/- 0.02 longitudinally, reached at a distending pressure below 20 mmHg. This was confirmed by vital imaging showing negligible microarchitectural changes of elastin and collagen upon pressurization. In conclusion, we show here, for the first time in resistance arteries, a quantitative relationship between pressure-induced changes in the extracellular matrix and the arterial wall mechanics. The strength of the integrated methods invites for future detailed studies of microvascular pathologies.NEW &amp; NOTEWORTHY This is the first study to quantitatively relate pressure-induced microstructural changes in resistance arteries to the mechanics of their wall. Principal findings using a pig model system were confirmed in human arteries. The combined methods provide a strong tool for future hypothesis-driven studies of microvascular pathologies.</p

    Additional file 1: Figure S1. of Decreased cortical FADD protein is associated with clinical dementia and cognitive decline in an elderly community sample

    No full text
    Colocalization of FADD and HLA-DR positive (activated) microglia in the DLPFC of neuropathology-free NCI (n = 3) MAP participants. Single-channel (in greys) or merged confocal images correspond to double co-immunolabeled sections with antibodies against FADD (H181, Santa-Cruz, 1:50; magenta) and HLA-DR (clone CR3/43, Dako, 1:100; green). In merged image, colors were arbitrarily assigned to maximize overlap visualization. Overlap panel is an ImageJ-generated bitmap highlighting those pixels where significant colocalization over an unbiased threshold of intensities between the indicated channels was detected in pairwise colocalization analyses. Unlike its neuronal localization pattern, FADD seems absent from the microglial nuclei, and mayor colocalization between these markers appears in activated microglial processes (see yellow arrows). Possibly, FADD microglial inclusions might derive from post-apoptotic neurons. Scale bar: 20 μm. (PDF 292 kb
    corecore