4,871 research outputs found

    College Education and the Military Training Program

    Get PDF

    Hydra: An Adaptive--Mesh Implementation of PPPM--SPH

    Get PDF
    We present an implementation of Smoothed Particle Hydrodynamics (SPH) in an adaptive-mesh PPPM algorithm. The code evolves a mixture of purely gravitational particles and gas particles. The code retains the desirable properties of previous PPPM--SPH implementations; speed under light clustering, naturally periodic boundary conditions and accurate pairwise forces. Under heavy clustering the cycle time of the new code is only 2--3 times slower than for a uniform particle distribution, overcoming the principal disadvantage of previous implementations\dash a dramatic loss of efficiency as clustering develops. A 1000 step simulation with 65,536 particles (half dark, half gas) runs in one day on a Sun Sparc10 workstation. The choice of time integration scheme is investigated in detail. A simple single-step Predictor--Corrector type integrator is most efficient. A method for generating an initial distribution of particles by allowing a a uniform temperature gas of SPH particles to relax within a periodic box is presented. The average SPH density that results varies by ∌±1.3\sim\pm1.3\%. We present a modified form of the Layzer--Irvine equation which includes the thermal contribution of the gas together with radiative cooling. Tests of sound waves, shocks, spherical infall and collapse are presented. Appropriate timestep constraints sufficient to ensure both energy and entropy conservation are discussed. A cluster simulation, repeating Thomas andComment: 29 pp, uuencoded Postscrip

    Developing modern multifunctional agroforestry systems for sustainable intensification

    Get PDF
    Agroforestry is a land-use system that integrates trees and shrubs with crops and/or livestock production. It has been identified by the International Assessment of Agricultural Knowledge, Science and Technology for Development (IAASTD, 2008) as a ‘win-win’ approach that balances the production of commodities (food, feed, fuel, fibre, etc.) with non-commodity outputs such as environmental protection and cultural and landscape amenities. This paper will review the potential of agroforestry as part of a multifunctional working landscape in temperate regions, and will consider management and policy implications of widespread adoption of this form of land-use

    The effect of radiative cooling on scaling laws of X-ray groups and clusters

    Get PDF
    We have performed cosmological simulations in a ΛCDM cosmology with and without radiative cooling in order to study the effect of cooling on the cluster scaling laws. Our simulations consist of 4.1 million particles each of gas and dark matter within a box size of 100 h-1 Mpc, and the run with cooling is the largest of its kind to have been evolved to z = 0. Our cluster catalogs both consist of over 400 objects and are complete in mass down to ~1013 h-1 M☉. We contrast the emission-weighted temperature-mass (Tew-M) and bolometric luminosity-temperature (Lbol-Tew) relations for the simulations at z = 0. We find that radiative cooling increases the temperature of intracluster gas and decreases its total luminosity, in agreement with the results of Pearce et al. Furthermore, the temperature dependence of these effects flattens the slope of the Tew-M relation and steepens the slope of the Lbol-Tew relation. Inclusion of radiative cooling in the simulations is sufficient to reproduce the observed X-ray scaling relations without requiring excessive nongravitational energy injection

    Smoothed Particle Hydrodynamics in cosmology: a comparative study of implementations

    Get PDF
    We analyse the performance of twelve different implementations of Smoothed Particle Hydrodynamics (SPH) using seven tests designed to isolate key hydrodynamic elements of cosmological simulations which are known to cause the SPH algorithm problems. In order, we consider a shock tube, spherical adiabatic collapse, cooling flow model, drag, a cosmological simulation, rotating cloud-collapse and disc stability. In the implementations special attention is given to the way in which force symmetry is enforced in the equations of motion. We study in detail how the hydrodynamics are affected by different implementations of the artificial viscosity including those with a shear-correction modification. We present an improved first-order smoothing-length update algorithm that is designed to remove instabilities that are present in the Hernquist and Katz (1989) algorithm. For all tests we find that the artificial viscosity is the most important factor distinguishing the results from the various implementations. The second most important factor is the way force symmetry is achieved in the equation of motion. Most results favour a kernel symmetrization approach. The exact method by which SPH pressure forces are included has comparatively little effect on the results. Combining the equation of motion presented in Thomas and Couchman (1992) with a modification of the Monaghan and Gingold (1983) artificial viscosity leads to an SPH scheme that is both fast and reliable.Comment: 30 pages, 26 figures and 9 tables included. Submitted to MNRAS. Postscript version available at ftp://phobos.astro.uwo.ca/pub/etittley/papers/sphtest.ps.g

    Peculiar Velocities of Galaxy Clusters

    Full text link
    We investigate the peculiar velocities predicted for galaxy clusters by theories in the cold dark matter family. A widely used hypothesis identifies rich clusters with high peaks of a suitably smoothed version of the linear density fluctuation field. Their peculiar velocities are then obtained by extrapolating the similarly smoothed linear peculiar velocities at the positions of these peaks. We test these ideas using large high resolution N-body simulations carried out within the Virgo supercomputing consortium. We find that at early times the barycentre of the material which ends up in a rich cluster is generally very close to a high peak of the initial density field. Furthermore the mean peculiar velocity of this material agrees well with the linear value at the peak. The late-time growth of peculiar velocities is, however, systematically underestimated by linear theory. At the time clusters are identified we find their rms peculiar velocity to be about 40% larger than predicted. Nonlinear effects are particularly important in superclusters. These systematics must be borne in mind when using cluster peculiar velocities to estimate the parameter combination σ8Ω0.6\sigma_8\Omega^{0.6}.Comment: 8 pages, 4 figures; submitted to MNRA
    • 

    corecore