28 research outputs found

    Loss of the Putative Catalytic Domain of HDAC4 Leads to Reduced Thermal Nociception and Seizures while Allowing Normal Bone Development

    Get PDF
    Histone deacetylase 4 (HDAC4) has been associated with muscle & bone development [1]–[6]. N-terminal MEF2 and RUNX2 binding domains of HDAC4 have been shown to mediate these effects in vitro. A complete gene knockout has been reported to result in premature ossification and associated defects resulting in postnatal lethality [6]. We report a viral insertion mutation that deletes the putative deacetylase domain, while preserving the N-terminal portion of the protein. Western blot and immuno-precipitation analysis confirm expression of truncated HDAC4 containing N-terminal amino acids 1-747. These mutant mice are viable, living to at least one year of age with no gross defects in muscle or bone. At 2–4 months of age no behavioral or physiological abnormalities were detected except for an increased latency to respond to a thermal nociceptive stimulus. As the mutant mice aged past 5 months, convulsions appeared, often elicited by handling. Our findings confirm the sufficiency of the N-terminal domain for muscle and bone development, while revealing other roles of HDAC4

    Genetic Disruption of Both Tryptophan Hydroxylase Genes Dramatically Reduces Serotonin and Affects Behavior in Models Sensitive to Antidepressants

    Get PDF
    The neurotransmitter serotonin (5-HT) plays an important role in both the peripheral and central nervous systems. The biosynthesis of serotonin is regulated by two rate-limiting enzymes, tryptophan hydroxylase-1 and -2 (TPH1 and TPH2). We used a gene-targeting approach to generate mice with selective and complete elimination of the two known TPH isoforms. This resulted in dramatically reduced central 5-HT levels in Tph2 knockout (TPH2KO) and Tph1/Tph2 double knockout (DKO) mice; and substantially reduced peripheral 5-HT levels in DKO, but not TPH2KO mice. Therefore, differential expression of the two isoforms of TPH was reflected in corresponding depletion of 5-HT content in the brain and periphery. Surprisingly, despite the prominent and evolutionarily ancient role that 5-HT plays in both vertebrate and invertebrate physiology, none of these mutations resulted in an overt phenotype. TPH2KO and DKO mice were viable and normal in appearance. Behavioral alterations in assays with predictive validity for antidepressants were among the very few phenotypes uncovered. These behavioral changes were subtle in the TPH2KO mice; they were enhanced in the DKO mice. Herein, we confirm findings from prior descriptions of TPH1 knockout mice and present the first reported phenotypic evaluations of Tph2 and Tph1/Tph2 knockout mice. The behavioral effects observed in the TPH2 KO and DKO mice strongly confirm the role of 5-HT and its synthetic enzymes in the etiology and treatment of affective disorders

    Transmembrane and ubiquitin-like domain containing 1 (Tmub1) regulates locomotor activity and wakefulness in mice and interacts with CAMLG.

    Get PDF
    Tmub1 (C7orf21/HOPS) encodes a protein containing a ubiquitin-like domain. Tmub1 is highly expressed in the nervous system. To study its physiological function, we generated mice with Tmub1 deleted by homologous recombination. The knockout mice were grossly normal and viable. In a comprehensive behavioral testing battery, the only knockout phenotype displayed was a strong increase in home cage locomotor activity during the dark phase (subjective day) of the light:dark (L:D) cycle. There were no changes in activity during the light period. There were no changes in locomotor activity observed in other assays, e.g. novel open-field. The increase in dark phase locomotor activity persisted during a seven day D:D (complete darkness) challenge, and remained largely confined to the normally dark period. Telemetric recording in freely moving subjects for one 24 hr L:D cycle, revealed the same increase in locomotor activity in the dark phase. In addition, EEG analysis showed that the knockout mice exhibited increased waking and decreased NREM & REM times during the dark phase, but the EEG was otherwise normal. Using lacZ as a reporter we found Tmub1 expression prominent in a few brain structures including the thalamus, a region known to drive wakefulness and arousal via its projections to the cortex. We identified calcium modulating cyclophilin ligand CAMLG/CAML as a binding partner by a yeast two-hybrid screen of a brain library. The interaction of Tmub1 and CAMLG was confirmed by co-immunoprecipitation assays in HEK cells. The two proteins were also found to be co-localized to the cytoplasm when expressed in HEK cells. Both Tmub1 and CAMLG have been recently described in the regulation of membrane trafficking of specific receptors. Taken together our results implicate Tmub1 in the regulation of locomotor activity and wakefulness and suggest that Tmub1 binds to and functions together with CAMLG

    Characterization of PTPRG in Knockdown and Phosphatase-Inactive Mutant Mice and Substrate Trapping Analysis of PTPRG in Mammalian Cells

    Get PDF
    <div><p>Receptor tyrosine phosphatase gamma (PTPRG, or RPTPγ) is a mammalian receptor-like tyrosine phosphatase which is highly expressed in the nervous system as well as other tissues. Its function and biochemical characteristics remain largely unknown. We created a knockdown (KD) line of this gene in mouse by retroviral insertion that led to 98–99% reduction of RPTPγ gene expression. The knockdown mice displayed antidepressive-like behaviors in the tail-suspension test, confirming observations by Lamprianou et al. 2006. We investigated this phenotype in detail using multiple behavioral assays. To see if the antidepressive-like phenotype was due to the loss of phosphatase activity, we made a knock-in (KI) mouse in which a mutant, RPTPγ C1060S, replaced the wild type. We showed that human wild type RPTPγ protein, expressed and purified, demonstrated tyrosine phosphatase activity, and that the RPTPγ C1060S mutant was completely inactive. Phenotypic analysis showed that the KI mice also displayed some antidepressive-like phenotype. These results lead to a hypothesis that an RPTPγ inhibitor could be a potential treatment for human depressive disorders. In an effort to identify a natural substrate of RPTPγ for use in an assay for identifying inhibitors, “substrate trapping” mutants (C1060S, or D1028A) were studied in binding assays. Expressed in HEK293 cells, these mutant RPTPγs retained a phosphorylated tyrosine residue, whereas similarly expressed wild type RPTPγ did not. This suggested that wild type RPTPγ might auto-dephosphorylate which was confirmed by an <em>in vitro</em> dephosphorylation experiment. Using truncation and mutagenesis studies, we mapped the auto-dephosphorylation to the Y1307 residue in the D2 domain. This novel discovery provides a potential natural substrate peptide for drug screening assays, and also reveals a potential functional regulatory site for RPTPγ. Additional investigation of RPTPγ activity and regulation may lead to a better understanding of the biochemical underpinnings of human depression.</p> </div

    RPTPγ substrate-trapping mutants in HEK293 cells.

    No full text
    <p>Phosphotyrosine-containing protein of about 190 kDa size “trapped” by RPTPγ C1060S or RPTPγ D1028A is RPTPγ. Recombinant wild type RPTPγ and substrate-trapped mutants were immunoprecipitated from transiently transfected HEK293F lysate with anti-myc mAb. Lanes 1 and 1′were IP product from pCDNA3 transfected cells, 2 and 2′ were from wild type RPTPγ transfected cells, 3 and 3′ were from RPTPγ C1060S transfected cells and 4 and 4′ were from RPTPγ D1060A transfected cells. Lane 1–4 were western reacted with anti-phosphotyrosine 4G10 mAb and lanes 1′-4′ were with anti-myc mAb.</p
    corecore