80 research outputs found

    Effects of Deoxycholylglycine, a Conjugated Secondary Bile Acid, on Myogenic Tone and Agonist-Induced Contraction in Rat Resistance Arteries

    Get PDF
    Bile acids (BAs) regulate cardiovascular function via diverse mechanisms. Although in both health and disease serum glycine-conjugated BAs are more abundant than taurine-conjugated BAs, their effects on myogenic tone (MT), a key determinant of systemic vascular resistance (SVR), have not been examined.Fourth-order mesenteric arteries (170-250 µm) isolated from Sprague-Dawley rats were pressurized at 70 mmHg and allowed to develop spontaneous constriction, i.e., MT. Deoxycholylglycine (DCG; 0.1-100 µM), a glycine-conjugated major secondary BA, induced reversible, concentration-dependent reduction of MT that was similar in endothelium-intact and -denuded arteries. DCG reduced the myogenic response to stepwise increase in pressure (20 to 100 mmHg). Neither atropine nor the combination of L-NAME (a NOS inhibitor) plus indomethacin altered DCG-mediated reduction of MT. K(+) channel blockade with glibenclamide (K(ATP)), 4-aminopyradine (K(V)), BaCl(2) (K(IR)) or tetraethylammonium (TEA, K(Ca)) were also ineffective. In Fluo-2-loaded arteries, DCG markedly reduced vascular smooth muscle cell (VSM) Ca(2+) fluorescence (∼50%). In arteries incubated with DCG, physiological salt solution (PSS) with high Ca(2+) (4 mM) restored myogenic response. DCG reduced vascular tone and VSM cytoplasmic Ca(2+) responses (∼50%) of phenylephrine (PE)- and Ang II-treated arteries, but did not affect KCl-induced vasoconstriction.In rat mesenteric resistance arteries DCG reduces pressure- and agonist-induced vasoconstriction and VSM cytoplasmic Ca(2+) responses, independent of muscarinic receptor, NO or K(+) channel activation. We conclude that BAs alter vasomotor responses, an effect favoring reduced SVR. These findings are likely pertinent to vascular dysfunction in cirrhosis and other conditions associated with elevated serum BAs

    Nitric oxide generation by isolated descending vasa recta

    No full text

    Mechanisms underlying angiotensin II-induced calcium oscillations

    No full text
    To gain insight into the mechanisms that underlie angiotensin II (ANG II)-induced cytoplasmic Ca2+ concentration ([Ca]cyt) oscillations in medullary pericytes, we expanded a prior model of ion fluxes. ANG II stimulation was simulated by doubling maximal inositol trisphosphate (IP3) production and imposing a 90% blockade of K+ channels. We investigated two configurations, one in which ryanodine receptors (RyR) and IP3 receptors (IP3R) occupy a common store and a second in which they reside on separate stores. Our results suggest that Ca2+ release from stores and import from the extracellular space are key determinants of oscillations because both raise [Ca] in subplasmalemmal spaces near RyR. When the Ca2+-induced Ca2+ release (CICR) threshold of RyR is exceeded, the ensuing Ca2+ release is limited by Ca2+ reuptake into stores and export across the plasmalemma. If sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) pumps do not remain saturated and sarcoplasmic reticulum Ca2+ stores are replenished, that phase is followed by a resumption of leak from internal stores that leads either to [Ca]cyt elevation below the CICR threshold (no oscillations) or to elevation above it (oscillations). Our model predicts that oscillations are more prone to occur when IP3R and RyR stores are separate because, in that case, Ca2+ released by RyR during CICR can enhance filling of adjacent IP3 stores to favor a high subsequent leak that generates further CICR events. Moreover, the existence or absence of oscillations depends on the set points of several parameters, so that biological variation might well explain the presence or absence of oscillations in individual pericytes

    Ouabain modulation of cellular calcium stores and signaling

    No full text

    Murine vasa recta pericyte chloride conductance is controlled by calcium, depolarization, and kinase activity

    No full text
    We used the whole cell patch-clamp technique to investigate the regulation of descending vasa recta (DVR) pericyte Ca2+-dependent Cl− currents (CaCC) by cytoplasmic Ca2+ concentration ([Ca]CYT), voltage, and kinase activity. Murine CaCC increased with voltage and electrode Ca2+ concentration. The current saturated at [Ca]CYT of ∼1,000 nM and exhibited an EC50 for Ca2+ of ∼500 nM, independent of depolarization potential. Activation time constants were between 100 and 200 ms, independent of electrode Ca2+. Repolarization-related tail currents elicited by stepping from +100 mV to varying test potentials exhibited deactivation time constants of 50–200 ms that increased with voltage when electrode [Ca]CYT was 1,000 nM. The calmodulin inhibitor N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W-7, 30 μM) blocked CaCC. The myosin light chain kinase blockers 1-(5-iodonaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine hydrochloride (ML-7, 1–50 μM) and 1-(5-chloronaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine hydrochloride (ML-9, 10 μM) were similarly effective. Resting pericytes were hyperpolarized by ML-7. Pericytes exposed to ANG II (10 nM) depolarized from a baseline of −50 ± 6 to −29 ± 3 mV and were repolarized to −63 ± 7 mV by exposure to 50 μM ML-7. The Ca2+/calmodulin-dependent kinase inhibitor KN-93 reduced pericyte CaCC only when it was present in the electrode and extracellular buffer from the time of membrane break-in. We conclude that murine DVR pericytes are modulated by [Ca]CYT, membrane potential, and phosphorylation events, suggesting that Ca2+-dependent Cl− conductance may be a target for regulation of vasoactivity and medullary blood flow in vivo
    • …
    corecore