84 research outputs found
Strongly Polynomial Primal-Dual Algorithms for Concave Cost Combinatorial Optimization Problems
We introduce an algorithm design technique for a class of combinatorial
optimization problems with concave costs. This technique yields a strongly
polynomial primal-dual algorithm for a concave cost problem whenever such an
algorithm exists for the fixed-charge counterpart of the problem. For many
practical concave cost problems, the fixed-charge counterpart is a well-studied
combinatorial optimization problem. Our technique preserves constant factor
approximation ratios, as well as ratios that depend only on certain problem
parameters, and exact algorithms yield exact algorithms.
Using our technique, we obtain a new 1.61-approximation algorithm for the
concave cost facility location problem. For inventory problems, we obtain a new
exact algorithm for the economic lot-sizing problem with general concave
ordering costs, and a 4-approximation algorithm for the joint replenishment
problem with general concave individual ordering costs
Separable Concave Optimization Approximately Equals Piecewise-Linear Optimization
We study the problem of minimizing a nonnegative separable concave function
over a compact feasible set. We approximate this problem to within a factor of
1+epsilon by a piecewise-linear minimization problem over the same feasible
set. Our main result is that when the feasible set is a polyhedron, the number
of resulting pieces is polynomial in the input size of the polyhedron and
linear in 1/epsilon. For many practical concave cost problems, the resulting
piecewise-linear cost problem can be formulated as a well-studied discrete
optimization problem. As a result, a variety of polynomial-time exact
algorithms, approximation algorithms, and polynomial-time heuristics for
discrete optimization problems immediately yield fully polynomial-time
approximation schemes, approximation algorithms, and polynomial-time heuristics
for the corresponding concave cost problems.
We illustrate our approach on two problems. For the concave cost
multicommodity flow problem, we devise a new heuristic and study its
performance using computational experiments. We are able to approximately solve
significantly larger test instances than previously possible, and obtain
solutions on average within 4.27% of optimality. For the concave cost facility
location problem, we obtain a new 1.4991+epsilon approximation algorithm.Comment: Full pape
A Linear Approximation Approach to Duality in Nonlinear Programming
Linear approximation and linear programming duality theory are used as unifying tools to develop saddlepoint, Fenchel and local duality theory. Among results presented is a new and elementary proof of the necessity and sufficiency of the stability condition for saddlepoint duality, an equivalence between the saddlepoint and Fenchel theories, and nasc for an optimal solution of an optimization problem to be a Kuhn-Tucker point. Several of the classic "constraint qualifications" are discussed with respect to this last condition. In addition, generalized versions of Fenchel and Rockafeller duals are introduced. Finally, a shortened proof is given of a result of Mangasarian and Fromowitz that under fairly general conditions an optimal point is also a Fritz John point.Supported in part by the US Army Research Office (Durham) under Contract DAHC04-70-C-005
Fenchel and Lagrange Duality are Equivalent
A basic result in ordinary (Lagrange) convex programming is the saddlepoint duality theorem concerning optimization problems with convex inequalities and linear-affine equalities satisfying a Slater condition. This note shows that this result is equivalent to the duality theorem of Fenchel.Supported in part by the U.S. Army Research Office (Durham) under Contract No. DAHC04-73-C-0032
Location Games and Bounds for Median Problems
We consider a two-person zero-sum game in which the maximizer selects a point in a given bounded planar region, the minimizer selects K points in that region,.and the payoff is the distance from the maximizer's location to the minimizer's location closest to it. In a variant of this game, the maximizer has the privilege of restricting the game to any subset of the given region. We evaluate/approximate the values (and the saddle point strategies) of these games for K = 1 as well as for K + , thus obtaining tight upper bounds (and worst possible demand distributions) for K-median problems
A Unifying Geometric Solution Framework and Complexity Analysis for Variational Inequalities
In this paper, we propose a concept of polynomiality for variational inequality problems and show how to find a near optimal solution of variational inequality problems in a polynomial number of iterations. To establish this result we build upon insights from several algorithms for linear and nonlinear programs (the ellipsoid algorithm, the method of centers of gravity, the method of inscribed ellipsoids, and Vaidya's algorithm) to develop a unifying geometric framework for solving variational inequality problems. The analysis rests upon the assumption of strong-f-monotonicity, which is weaker than strict and strong monotonicity. Since linear programs satisfy this assumption, the general framework applies to linear programs
Shortest Paths, Network Design and Associated Polyhedra
We study a specialized version of network design problems that arise in telecommunication, transportation and other industries. The problem, a generalization of the shortest path problem, is defined on an undirected network consisting of a set of arcs on which we can install (load), at a cost, a choice of up to three types of capacitated facilities. Our objective is to determine the configuration of facilities to load on each arc that will satisfy the demand of a single commodity at the lowest possible cost. Our results (i) demonstrate that the single-facility loading problem and certain "common breakeven point" versions of the two-facility and three-facility loading problems are polynomially solvable as a shortest path problem; (ii) show that versions of the twofacility loading problem are strongly NP-hard, but that a shortest path solution provides an asymptotically "good" heuristic; and (iii) characterize the optimal solution (that is, specify a linear programming formulation with integer solutions) of the common breakeven point versions of the two-facility and three-facility loading problems. In this development, we introduce two new families of facets, give geometric interpretations of our results, and demonstrate the usefulness of partitioning the space of the problem parameters to establish polyhedral integrality properties. Generalizations of our results apply to (i) multicommodity applications and (ii) situations with more than three facilities
Convergence Conditions for Variational Inequality Algorithms
Within the extensive variational inequality literature, researchers have developed many algorithms. Depending upon the problem setting, these algorithms ensure the convergence of (i) the entire sequence of iterates, (ii) a subsequence of the iterates, or (iii) averages of the iterates. To establish these convergence results, the literature repeatedly invokes several basic convergence theorems. In this paper, we review these theorems and a few convergence results they imply, and introduce a new result, called the orthogonality theorem, for establishing the convergence of several algorithms for solving a certain class of variational inequalities. Several of the convergence results impose a condition of strong-f-monotonicity on the problem function. We also provide a general overview of the properties of strong-f-monotonicity, including some new results (for example, the relationship between strong-f-monotonicity and convexity)
Averaging Schemes for Solving Fived Point and Variational Inequality Problems
We develop and study averaging schemes for solving fixed point and variational inequality problems. Typically, researchers have established convergence results for solution methods for these problems by establishing contractive estimates for their algorithmic maps. In this paper, we establish global convergence results using nonexpansive estimates. After first establishing convergence for a general iterative scheme for computing fixed points, we consider applications to projection and relaxation algorithms for solving variational inequality problems and to a generalized steepest descent method for solving systems of equations. As part of our development, we also establish a new interpretation of a norm condition typically used for establishing convergence of linearization schemes, by associating it with a strong-f-monotonicity condition. We conclude by applying our results to transportation networks
- …