2,954 research outputs found

    A Vibrio cholerae Classical TcpA Amino Acid Sequence Induces Protective Antibody That Binds an Area Hypothesized To Be Important for Toxin-Coregulated Pilus Structure

    Get PDF
    Vibrio cholerae is a gram-negative bacterium that has been associated with cholera pandemics since the early 1800s. Whole-cell, killed, and live-attenuated oral cholera vaccines are in use. We and others have focused on the development of a subunit cholera vaccine that features standardized epitopes from various V. cholerae macromolecules that are known to induce protective antibody responses. TcpA protein is assembled into toxin-coregulated pilus (TCP), a type IVb pilus required for V. cholerae colonization, and thus is a strong candidate for a cholera subunit vaccine. Polypeptides (24 to 26 amino acids) in TcpA that can induce protective antibody responses have been reported, but further characterization of their amino acid targets relative to tertiary or quaternary TCP structures has not been done. We report a refinement of the TcpA sequences that can induce protective antibody. One sequence, TcpA 15 (residues 170 to 183), induces antibodies that bind linear TcpA in a Western blot as well as weakly bind soluble TcpA in solution. These antibodies bind assembled pili at high density and provide 80 to 100% protection in the infant mouse protection assay. This is in sharp contrast to other anti-TcpA peptide sera (TcpA 11, TcpA 13, and TcpA 17) that bind very strongly in Western blot and solution assays yet do not provide protection or effectively bind TCP, as evidenced by immunoelectron microscopy. The sequences of TcpA 15 that induce protective antibody were localized on a model of assembled TCP. These sequences are centered on a site that is predicted to be important for TCP structure

    Use of In Vivo-Induced Antigen Technology (IVIAT) to Identify Genes Uniquely Expressed During Human Infection with Vibrio Cholerae

    Get PDF
    In vivo-induced antigen technology is a method to identify proteins expressed by pathogenic bacteria during human infection. Sera from 10 patients convalescing from cholera infection in Bangladesh were pooled, adsorbed against in vitro-grown El Tor Vibrio cholerae O1, and used to probe a genomic expression library in Escherichia coli constructed from El Tor V. cholerae O1 strain N16961. We identified 38 positive clones in the screen, encoding pili (PilA and TcpA), cell membrane proteins (PilQ, MshO, MshP, and CapK), methyl-accepting chemotaxis proteins, chemotaxis and motility proteins (CheA and CheR), a quorum-sensing protein (LuxP), and four hypothetical proteins. Analysis of immune responses to purified PilA and TcpA in individual patients demonstrated that the majority seroconverted to these proteins, confirming results with pooled sera. These results suggest that PilA and its outer membrane secretin, PilQ, are expressed during human infection and may be involved in colonization of the gastrointestinal tract. These results also demonstrate substantial immune responses to TcpA in patients infected with El Tor V. cholerae O1. In vivo-induced antigen technology provides a simple method for identifying microbial proteins expressed during human infection, but not during in vitro growth

    A Measurement of Time-Averaged Aerosol Optical Depth using Air-Showers Observed in Stereo by HiRes

    Full text link
    Air fluorescence measurements of cosmic ray energy must be corrected for attenuation of the atmosphere. In this paper we show that the air-showers themselves can yield a measurement of the aerosol attenuation in terms of optical depth, time-averaged over extended periods. Although the technique lacks statistical power to make the critical hourly measurements that only specialized active instruments can achieve, we note the technique does not depend on absolute calibration of the detector hardware, and requires no additional equipment beyond the fluorescence detectors that observe the air showers. This paper describes the technique, and presents results based on analysis of 1258 air-showers observed in stereo by the High Resolution Fly's Eye over a four year span.Comment: 7 pages, 3 figures, accepted for publication by Astroparticle Physics Journa

    Search for Global Dipole Enhancements in the HiRes-I Monocular Data above 10^{18.5} eV

    Full text link
    Several proposed source models for Ultra-High Energy Cosmic Rays (UHECRs) consist of dipole distributions oriented towards major astrophysical landmarks such as the galactic center, M87, or Centaurus A. We use a comparison between real data and simulated data to show that the HiRes-I monocular data for energies above 10^{18.5} eV is, in fact, consistent with an isotropic source model. We then explore methods to quantify our sensitivity to dipole source models oriented towards the Galactic Center, M87, and Centaurus A.Comment: 17 pages, 31 figure

    Observation of the Ankle and Evidence for a High-Energy Break in the Cosmic Ray Spectrum

    Full text link
    We have measured the cosmic ray spectrum at energies above 101710^{17} eV using the two air fluorescence detectors of the High Resolution Fly's Eye experiment operating in monocular mode. We describe the detector, PMT and atmospheric calibrations, and the analysis techniques for the two detectors. We fit the spectrum to models describing galactic and extragalactic sources. Our measured spectrum gives an observation of a feature known as the ``ankle'' near 3×10183\times 10^{18} eV, and strong evidence for a suppression near 6×10196\times 10^{19} eV.Comment: 14 pages, 9 figures. To appear in Physics Letters B. Accepted versio

    Search for Point Sources of Ultra-High Energy Cosmic Rays Above 40 EeV Using a Maximum Likelihood Ratio Test

    Full text link
    We present the results of a search for cosmic ray point sources at energies above 40 EeV in the combined data sets recorded by the AGASA and HiRes stereo experiments. The analysis is based on a maximum likelihood ratio test using the probability density function for each event rather than requiring an a priori choice of a fixed angular bin size. No statistically significant clustering of events consistent with a point source is found.Comment: 7 pages, 7 figures. Accepted for publication in The Astrophysical Journa

    An upper limit on the electron-neutrino flux from the HiRes detector

    Full text link
    Air-fluorescence detectors such as the High Resolution Fly's Eye (HiRes) detector are very sensitive to upward-going, Earth-skimming ultrahigh energy electron-neutrino-induced showers. This is due to the relatively large interaction cross sections of these high-energy neutrinos and to the Landau-Pomeranchuk-Migdal (LPM) effect. The LPM effect causes a significant decrease in the cross sections for bremsstrahlung and pair production, allowing charged-current electron-neutrino-induced showers occurring deep in the Earth's crust to be detectable as they exit the Earth into the atmosphere. A search for upward-going neutrino-induced showers in the HiRes-II monocular dataset has yielded a null result. From an LPM calculation of the energy spectrum of charged particles as a function of primary energy and depth for electron-induced showers in rock, we calculate the shape of the resulting profile of these showers in air. We describe a full detector Monte Carlo simulation to determine the detector response to upward-going electron-neutrino-induced cascades and present an upper limit on the flux of electron-neutrinos.Comment: 13 pages, 3 figures. submitted to Astrophysical Journa
    • 

    corecore