1,312 research outputs found

    Natal Kicks of Stellar-Mass Black Holes by Asymmetric Mass Ejection in Fallback Supernovae

    Full text link
    Integrating trajectories of low-mass X-ray binaries containing black holes within the Galactic potential, Repetto, Davies & Sigurdsson recently showed that the large distances of some systems above the Galactic plane can only be explained if black holes receive appreciable natal kicks. Surprisingly, they found that the distribution of black hole kick velocities (rather than that of the momenta) should be similar to that of neutron stars. Here I argue that this result can be understood if neutron star and black hole kicks are a consequence of large-scale asymmetries created in the supernova ejecta by the explosion mechanism. The corresponding anisotropic gravitational attraction of the asymmetrically expelled matter does not only accelerate new-born neutron stars by the "gravitational tug-boat mechanism". It can also lead to delayed black-hole formation by asymmetric fallback of the slowest parts of the initial ejecta onto the transiently existing neutron star, in course of which the momentum of the black hole can grow with the fallback mass. Black hole kick velocities will therefore not be reduced by the ratio of neutron star to black hole mass as would be expected for kicks caused by anisotropic neutrino emission of the nascent neutron star.Comment: 7 pages, 1 figure (3 eps files); submitted to MNRA

    The r-Process in Black Hole Winds

    Full text link
    All the current r-process scenarios relevant to core-collapse supernovae are facing severe difficulties. In particular, recent core-collapse simulations with neutrino transport show no sign of a neutron-rich wind from the proto-neutron star. In this paper, we discuss nucleosynthesis of the r-process in an alternative astrophysical site, "black hole winds", which are the neutrino-driven outflow from the accretion torus around a black hole. This condition is assumed to be realized in double neutron star mergers, neutron star - black hole mergers, or hypernovae.Comment: 6 pages, 4 figures, invited talk at OMEG10, March 2010, to be published in the proceedings of OMEG10 (AIP

    Spatial distribution of radionuclides in 3D models of SN 1987A and Cas A

    Full text link
    Fostered by the possibilities of multi-dimensional computational modeling, in particular the advent of three-dimensional (3D) simulations, our understanding of the neutrino-driven explosion mechanism of core-collapse supernovae (SNe) has experienced remarkable progress over the past decade. First self-consistent, first-principle models have shown successful explosions in 3D, and even failed cases may be cured by moderate changes of the microphysics inside the neutron star (NS), better grid resolution, or more detailed progenitor conditions at the onset of core collapse, in particular large-scale perturbations in the convective Si and O burning shells. 3D simulations have also achieved to follow neutrino-driven explosions continuously from the initiation of the blast wave, through the shock breakout from the progenitor surface, into the radioactively powered evolution of the SN, and towards the free expansion phase of the emerging remnant. Here we present results from such simulations, which form the basis for direct comparisons with observations of SNe and SN remnants in order to derive constraints on the still disputed explosion mechanism. It is shown that predictions based on hydrodynamic instabilities and mixing processes associated with neutrino-driven explosions yield good agreement with measured NS kicks, light-curve properties of SN 1987A, and asymmetries of iron and 44Ti distributions observed in SN 1987A and Cassiopeia A.Comment: 9 pages, 6 figures; submitted to: "SN 1987A, 30 years later", Proceedings IAU Symposium No. 331, 2017; eds. M. Renaud et a

    Exploring properties of high-density matter through remnants of neutron-star mergers

    Full text link
    Remnants of neutron-star mergers are essentially massive, hot, differentially rotating neutron stars, which are initially strongly oscillating. They represent a unique probe for high-density matter because the oscillations are detectable via gravitational-wave measurements and are strongly dependent on the equation of state. The impact of the equation of state is apparent in the frequency of the dominant oscillation mode of the remnant. For a fixed total binary mass a tight relation between the dominant postmerger frequency and the radii of nonrotating neutron stars exists. Inferring observationally the dominant postmerger frequency thus determines neutron star radii with high accuracy of the order of a few hundred meters. By considering symmetric and asymmetric binaries of the same chirp mass, we show that the knowledge of the binary mass ratio is not critical for this kind of radius measurements. We summarize different possibilities to deduce the maximum mass of nonrotating neutron stars. We clarify the nature of the three most prominent features of the postmerger gravitational-wave spectrum and argue that the merger remnant can be considered to be a single, isolated, self-gravitating object that can be described by concepts of asteroseismology. The understanding of the different mechanisms shaping the gravitational-wave signal yields a physically motivated analytic model of the gravitational-wave emission, which may form the basis for template-based gravitational-wave data analysis. We explore the observational consequences of a scenario of two families of compact stars including hadronic and quark stars. We find that this scenario leaves a distinctive imprint on the postmerger gravitational-wave signal. In particular, a strong discontinuity in the dominant postmerger frequency as function of the total mass will be a strong indication for two families of compact stars. (abridged)Comment: 22 pages, 17 figures; accepted for publication in EPJ

    Electron-capture supernovae as sources of 60Fe

    Full text link
    We investigate the nucleosynthesis of the radionuclide 60Fe in electron-capture supernovae (ECSNe). The nucleosynthetic results are based on a self-consistent, two-dimensional simulation of an ECSN as well as models in which the densities are systematically increased by some factors (low-entropy models). 60Fe is found to be appreciably made in neutron-rich ejecta during the nuclear quasi-equilibrium phase with greater amounts being produced in the lower-entropy models. Our results, combining them with the yields of core-collapse supernovae (CCSNe) in the literature, suggest that ECSNe account for at least 4-30% of live 60Fe in the Milky Way. ECSNe co-produce neutron-rich isotopes, 48Ca, 50Ti, 54Cr, some light trans-iron elements, and possibly weak r-process elements including some radionuclides such as 93Zr, 99Tc, and 107Pd, whose association with 60Fe might have been imprinted in primitive meteorites or in the deep ocean crust on the Earth.Comment: 6 pages, 2 figures, accepted for publication in ApJ

    Three-Dimensional Simulations of Core-Collapse Supernovae: From Shock Revival to Shock Breakout

    Full text link
    We present 3D simulations of core-collapse supernovae from blast-wave initiation by the neutrino-driven mechanism to shock breakout from the stellar surface, considering two 15 Msun red supergiants (RSG) and two blue supergiants (BSG) of 15 Msun and 20 Msun. We demonstrate that the metal-rich ejecta in homologous expansion still carry fingerprints of asymmetries at the beginning of the explosion, but the final metal distribution is massively affected by the detailed progenitor structure. The most extended and fastest metal fingers and clumps are correlated with the biggest and fastest-rising plumes of neutrino-heated matter, because these plumes most effectively seed the growth of Rayleigh-Taylor (RT) instabilities at the C+O/He and He/H composition-shell interfaces after the passage of the SN shock. The extent of radial mixing, global asymmetry of the metal-rich ejecta, RT-induced fragmentation of initial plumes to smaller-scale fingers, and maximal Ni and minimal H velocities do not only depend on the initial asphericity and explosion energy (which determine the shock and initial Ni velocities) but also on the density profiles and widths of C+O core and He shell and on the density gradient at the He/H transition, which lead to unsteady shock propagation and the formation of reverse shocks. Both RSG explosions retain a great global metal asymmetry with pronounced clumpiness and substructure, deep penetration of Ni fingers into the H-envelope (with maximum velocities of 4000-5000 km/s for an explosion energy around 1.5 bethe) and efficient inward H-mixing. While the 15 Msun BSG shares these properties (maximum Ni speeds up to ~3500 km/s), the 20 Msun BSG develops a much more roundish geometry without pronounced metal fingers (maximum Ni velocities only ~2200 km/s) because of reverse-shock deceleration and insufficient time for strong RT growth and fragmentation at the He/H interface.Comment: 21 pages, 15 figures; revised version with minor changes in Sect.1; accepted by Astron. Astrophy

    Neutrino transport in type II supernovae: Boltzmann solver vs. Monte Carlo method

    Full text link
    We have coded a Boltzmann solver based on a finite difference scheme (S_N method) aiming at calculations of neutrino transport in type II supernovae. Close comparison between the Boltzmann solver and a Monte Carlo transport code has been made for realistic atmospheres of post bounce core models under the assumption of a static background. We have also investigated in detail the dependence of the results on the numbers of radial, angular, and energy grid points and the way to discretize the spatial advection term which is used in the Boltzmann solver. A general relativistic calculation has been done for one of the models. We find overall good agreement between the two methods. However, because of a relatively small number of angular grid points (which is inevitable due to limitations of the computation time) the Boltzmann solver tends to underestimate the flux factor and the Eddington factor outside the (mean) ``neutrinosphere'' where the angular distribution of the neutrinos becomes highly anisotropic. This fact suggests that one has to be cautious in applying the Boltzmann solver to a calculation of the neutrino heating in the hot-bubble region because it might tend to overestimate the local energy deposition rate. A comparison shows that this trend is opposite to the results obtained with a multi-group flux-limited diffusion approximation of neutrino transport. The accuracy of the Boltzmann solver can be considerably improved by using a variable angular mesh to increase the angular resolution in the semi-transparent regime.Comment: 19 pages, 17 figures, submitted to A&

    Neutrino-driven supernova of a low-mass iron-core progenitor boosted by three-dimensional turbulent convection

    Full text link
    We present the first successful simulation of a neutrino-driven supernova explosion in three dimensions (3D), using the Prometheus-Vertex code with an axis-free Yin-Yang grid and a sophisticated treatment of three-flavor, energy-dependent neutrino transport. The progenitor is a nonrotating, zero-metallicity 9.6 Msun star with an iron core. While in spherical symmetry outward shock acceleration sets in later than 300 ms after bounce, a successful explosion starts at ~130 ms postbounce in two dimensions (2D). The 3D model explodes at about the same time but with faster shock expansion than in 2D and a more quickly increasing and roughly 10 percent higher explosion energy of >10^50 erg. The more favorable explosion conditions in 3D are explained by lower temperatures and thus reduced neutrino emission in the cooling layer below the gain radius. This moves the gain radius inward and leads to a bigger mass in the gain layer, whose larger recombination energy boosts the explosion energy in 3D. These differences are caused by less coherent, less massive, and less rapid convective downdrafts associated with postshock convection in 3D. The less violent impact of these accretion downflows in the cooling layer produces less shock heating and therefore diminishes energy losses by neutrino emission. We thus have, for the first time, identified a reduced mass accretion rate, lower infall velocities, and a smaller surface filling factor of convective downdrafts as consequences of 3D postshock turbulence that facilitate neutrino-driven explosions and strengthen them compared to the 2D case.Comment: 7 pages, 5 figures; revised version with more discussion of resolution dependence and differences to other 3D results; accepted by ApJ

    Resolution Study for Three-dimensional Supernova Simulations with the Prometheus-Vertex Code

    Full text link
    We present a carefully designed, systematic study of the angular resolution dependence of simulations with the Prometheus-Vertex neutrino-hydrodynamics code. Employing a simplified neutrino heating-cooling scheme in the Prometheus hydrodynamics module allows us to sample the angular resolution between 4 degrees and 0.5 degrees. With a newly-implemented static mesh refinement (SMR) technique on the Yin-Yang grid, the angular coordinates can be refined in concentric shells, compensating for the diverging structure of the spherical grid. In contrast to previous studies with Prometheus and other codes, we find that higher angular resolution and therefore lower numerical viscosity provides more favorable explosion conditions and faster shock expansion. We discuss the possible reasons for the discrepant results. The overall dynamics seem to converge at a resolution of about 1 degree. Applying the SMR setup to marginally exploding progenitors is disadvantageous for the shock expansion, however, because kinetic energy of downflows is dissipated to internal energy at resolution interfaces, leading to a loss of turbulent pressure support and a steeper temperature gradient. We also present a way to estimate the numerical viscosity on grounds of the measured turbulent kinetic-energy spectrum, leading to smaller values that are better compatible with the flow behavior witnessed in our simulations than results following calculations in previous literature. Interestingly, the numerical Reynolds numbers in the turbulent, neutrino-heated postshock layer (some 10 to several 100) are in the ballpark of expected neutrino-drag effects on the relevant length scales in the turbulent postshock layer. We provide a formal derivation and quantitative assessment of the neutrino drag terms in an appendix.Comment: 37 pages, 14 figures, 4 tables; revised version with neutrino drag discussion extended for numerical evaluation; accepted by Ap

    Electron-capture supernovae as origin of 48Ca

    Full text link
    We report that electron-capture supernovae (ECSNe), arising from collapsing oxygen-neon-magnesium cores, are a possible source of 48Ca, whose origin has remained a long-standing puzzle. Our two-dimensional, self-consistent explosion model of an ECSN predicts ejection of neutron-rich matter with electron fractions Ye = 0.40-0.42 and relatively low entropies, s = 13-15 kB per nucleon (kB is the Boltzmann constant). Post-processing nucleosynthesis calculations result in appreciable production of 48Ca in such neutron-rich and low-entropy matter during the quasi-nuclear equilibrium and subsequent freezeout phases. The amount of ejected 48Ca can account for that in the solar inventory when we consider possible uncertainties in the entropies or ejecta-mass distribution. ECSNe could thus be a site of 48Ca production in addition to a hypothetical, rare class of high-density Type Ia supernovae.Comment: 6 pages, 5 figures, accepted for publication in ApJ
    • …
    corecore