3,184 research outputs found

    Partially shared buffers with full or mixed priority

    Get PDF
    This paper studies a finite-sized discrete-time two-class priority queue. Packets of both classes arrive according to a two-class discrete batch Markovian arrival process (2-DBMAP), taking into account the correlated nature of arrivals in heterogeneous telecommunication networks. The model incorporates time and space priority to provide different types of service to each class. One of both classes receives absolute time priority in order to minimize its delay. Space priority is implemented by the partial buffer sharing acceptance policy and can be provided to the class receiving time priority or to the other class. This choice gives rise to two different queueing models and this paper analyses both these models in a unified manner. Furthermore, the buffer finiteness and the use of space priority raise some issues on the order of arrivals in a slot. This paper does not assume that all arrivals from one class enter the queue before those of the other class. Instead, a string representation for sequences of arriving packets and a probability measure on the set of such strings are introduced. This naturally gives rise to the notion of intra-slot space priority. Performance of these queueing systems is then determined using matrix-analytic techniques. The numerical examples explore the range of service differentiation covered by both models

    Partying and cocooning? no paradox for mayoral recruitment in Belgium

    Get PDF
    This paper studies the role of partisanship in the road to the Belgian mayoralty. It confirms the expectation that most mayors have quite extensive party records prior to coming to office. Although different degrees of partisanship are thus relative, they tend to sort both internal and external effects. Mayors with a highly partisan background give a more active interpretation of their initial recruitment and get a head start in their political career. They also more frequently come from families that are deeply engaged in politics. In addition, they combine their own partisan experience with additional recruitment apprenticeships. Having held a function in a party and having experienced extensive party support make mayoral orientations more partisan in terms of task importance and exchange of views with party leaders

    On the effect of combining cooperative communication with sleep mode

    Get PDF
    Cooperation is crucial in (next-generation) wireless networks as it can greatly attribute to ensuring connectivity, reliability, performance, ... Relaying looks promising in a wide variety of network types (cellular, ad-hoc on-demand), each using a certain protocol. Energy efficiency constitutes another key aspect of such networks, as battery power is often limited, and is typically achieved by sleep mode operation. As the range of applications is very broad, rather than modelling one of the protocols in detail, we construct a high-level model capturing the two essential characteristics of cooperation and energy efficiency: relaying and sleep mode, and study their interaction. The used analytical approach allows for accurate performance evaluation and enables us to unveil less trivial trade-offs and to formulate rules-of-thumb applicable across all potential scenarios

    A Method for Finding a Design Space as Linear Combinations of Parameter Ranges for Biopharmaceutical Control Strategies

    Full text link
    According to ICH Q8 guidelines, the biopharmaceutical manufacturer submits a design space (DS) definition as part of the regulatory approval application, in which case process parameter (PP) deviations within this space are not considered a change and do not trigger a regulatory post approval procedure. A DS can be described by non-linear PP ranges, i.e., the range of one PP conditioned on specific values of another. However, independent PP ranges (linear combinations) are often preferred in biopharmaceutical manufacturing due to their operation simplicity. While some statistical software supports the calculation of a DS comprised of linear combinations, such methods are generally based on discretizing the parameter space - an approach that scales poorly as the number of PPs increases. Here, we introduce a novel method for finding linear PP combinations using a numeric optimizer to calculate the largest design space within the parameter space that results in critical quality attribute (CQA) boundaries within acceptance criteria, predicted by a regression model. A precomputed approximation of tolerance intervals is used in inequality constraints to facilitate fast evaluations of this boundary using a single matrix multiplication. Correctness of the method was validated against different ground truths with known design spaces. Compared to stateof-the-art, grid-based approaches, the optimizer-based procedure is more accurate, generally yields a larger DS and enables the calculation in higher dimensions. Furthermore, a proposed weighting scheme can be used to favor certain PPs over others and therefore enabling a more dynamic approach to DS definition and exploration. The increased PP ranges of the larger DS provide greater operational flexibility for biopharmaceutical manufacturers.Comment: 15 pages, 7 figures, 3 tables, research articl
    corecore