702 research outputs found
Current quark mass dependence of nucleon magnetic moments and radii
A calculation of the current-quark-mass-dependence of nucleon static
electromagnetic properties is necessary in order to use observational data as a
means to place constraints on the variation of Nature's fundamental parameters.
A Poincare' covariant Faddeev equation, which describes baryons as composites
of confined-quarks and -nonpointlike-diquarks, is used to calculate this
dependence The results indicate that, like observables dependent on the
nucleons' magnetic moments, quantities sensitive to their magnetic and charge
radii, such as the energy levels and transition frequencies in Hydrogen and
Deuterium, might also provide a tool with which to place limits on the allowed
variation in Nature's constants.Comment: 23 pages, 2 figures, 4 tables, 4 appendice
Selected nucleon form factors and a composite scalar diquark
A covariant, composite scalar diquark, Fadde'ev amplitude model for the
nucleon is used to calculate pseudoscalar, isoscalar- and isovector-vector,
axial-vector and scalar nucleon form factors. The last yields the nucleon
sigma-term and on-shell sigma-nucleon coupling. The calculated form factors are
soft, and the couplings are generally in good agreement with experiment and
other determinations. Elements in the dressed-quark-axial-vector vertex that
are not constrained by the Ward-Takahashi identity contribute ~20% to the
magnitude of g_A. The calculation of the nucleon sigma-term elucidates the only
unambiguous means of extrapolating meson-nucleon couplings off the meson
mass-shell.Comment: 12 pages, REVTEX, 5 figures, epsfi
Survey of nucleon electromagnetic form factors
A dressed-quark core contribution to nucleon electromagnetic form factors is
calculated. It is defined by the solution of a Poincare' covariant Faddeev
equation in which dressed-quarks provide the elementary degree of freedom and
correlations between them are expressed via diquarks. The nucleon-photon vertex
involves a single parameter; i.e., a diquark charge radius. It is argued to be
commensurate with the pion's charge radius. A comprehensive analysis and
explanation of the form factors is built upon this foundation. A particular
feature of the study is a separation of form factor contributions into those
from different diagram types and correlation sectors, and subsequently a
flavour separation for each of these. Amongst the extensive body of results
that one could highlight are: r_1^{n,u}>r_1^{n,d}, owing to the presence of
axial-vector quark-quark correlations; and for both the neutron and proton the
ratio of Sachs electric and magnetic form factors possesses a zero.Comment: 43 pages, 17 figures, 12 tables, 5 appendice
Correction to: Pattern recognition and pharmacokinetic methods on DCE-MRI data for tumor hypoxia mapping in sarcoma
The article Pattern recognition and pharmacokinetic methods on DCE-MRI data for tumor hypoxia mapping in sarcoma, written by M. Venianaki, O. Salvetti, E. de Bree, T. Maris, A. Karantanas, E. Kontopodis, K. Nikiforaki, K. Marias, was originally published electronically without open access
Pattern recognition and pharmacokinetic methods on DCE-MRI data for tumor hypoxia mapping in sarcoma
The main purpose of this study is to analyze the intrinsic tumor physiologic characteristics in patients with sarcoma through model-free analysis of dynamic contrast enhanced MR imaging data (DCE-MRI). Clinical data were collected from three patients with two different types of histologically proven sarcomas who underwent conventional and advanced MRI examination prior to excision. An advanced matrix factorization algorithm has been applied to the data, resulting in the identification of the principal time-signal uptake curves of DCE-MRI data, which were used to characterize the physiology of the tumor area, described by three different perfusion patterns i.e. hypoxic, well-perfused and necrotic one. The performance of the algorithm was tested by applying different initialization approaches with subsequent comparison of their results. The algorithm was proven to be robust and led to the consistent segmentation of the tumor area in three regions of different perfusion, i.e. well- perfused, hypoxic and necrotic. Results from the model-free approach were compared with a widely used pharmacokinetic (PK) model revealing significant correlations
Sigma Terms of Light-Quark Hadrons
A calculation of the current-quark mass dependence of hadron masses can help
in using observational data to place constraints on the variation of nature's
fundamental parameters. A hadron's sigma-term is a measure of this dependence.
The connection between a hadron's sigma-term and the Feynman-Hellmann theorem
is illustrated with an explicit calculation for the pion using a rainbow-ladder
truncation of the Dyson-Schwinger equations: in the vicinity of the chiral
limit sigma_pi = m_pi/2. This truncation also provides a decent estimate of
sigma_rho because the two dominant self-energy corrections to the rho-meson's
mass largely cancel in their contribution to sigma_rho. The truncation is less
accurate for the omega, however, because there is little to compete with an
omega->rho+pi self-energy contribution that magnifies the value of sigma_omega
by ~25%. A Poincare' covariant Faddeev equation, which describes baryons as
composites of confined-quarks and -nonpointlike-diquarks, is solved to obtain
the current-quark mass dependence of the masses of the nucleon and Delta, and
thereby sigma_N and sigma_Delta. This "quark-core" piece is augmented by the
"pion cloud" contribution, which is positive. The analysis yields sigma_N~60MeV
and sigma_Delta~50MeV.Comment: 22 pages, reference list expande
Critique of a Pion Exchange Model for Interquark Forces
I describe four serious defects of a widely discussed pion exchange model for
interquark forces: it doesn't solve the "spin-orbit problem" as advertised, it
fails to describe the internal structure of baryon resonances, it leads to
disastrous conclusions when extended to mesons, and it is not reasonably
connected to the physics of heavy-light systems.Comment: 20 pages, 6 figures; some clarifications and references adde
Nonmyeloablative Unrelated Donor Hematopoietic Cell Transplantation to Treat Patients with Poor-Risk, Relapsed, or Refractory Multiple Myeloma
AbstractThe purpose of this study was to determine long-term outcome of unrelated donor nonmyeloablative hematopoietic cell transplantation (HCT) in patients with poor-risk multiple myeloma. A total of 24 patients were enrolled; 17 patients (71%) had chemotherapy-refractory disease, and 14 (58%) experienced disease relapse or progression after previous autologous transplantation. Thirteen patients underwent planned autologous transplantation followed 43–135 days later with unrelated transplantation, whereas 11 proceeded directly to unrelated transplantation. All 24 patients were treated with fludarabine (90 mg/m2) and 2 Gy of total body irradiation before HLA-matched unrelated peripheral blood stem cell transplantation. Postgrafting immunosuppression consisted of cyclosporine and mycophenolate mofetil. The median follow-up was 3 years after allografting. One patient experienced nonfatal graft rejection. The incidences of acute grades II and III and chronic graft-versus-host disease were 54%, 13%, and 75%, respectively. The 3-year nonrelapse mortality (NRM) was 21%. Complete responses were observed in 10 patients (42%); partial responses, in 4 (17%). At 3 years, overall survival (OS) and progression-free survival (PFS) rates were 61% and 33%, respectively. Patients receiving tandem autologous-unrelated transplantation had superior OS and PFS (77% and 51%) compared with patients proceeding directly to unrelated donor transplantation (44% and 11%) (PFS P value = .03). In summary, for patients with poor-risk, relapsed, or refractory multiple myeloma, cytoreductive autologous HCT followed by nonmyeloablative conditioning and unrelated HCT is an effective treatment approach, with low NRM, high complete remission rates, and prolonged disease-free survival
Nucleon mass and pion loops
Poincaré covariant Faddeev equations for the nucleon and Δ are solved to illustrate that an internally consistent description in terms of confined-quark and non-point-like confined-diquark correlations can be obtained. πN-loop induced self-energy corrections to the nucleon’s mass are analyzed and shown to be independent of whether a pseudoscalar or pseudovector coupling is used. Phenomenological constraints suggest that this self-energy correction reduces the nucleon’s mass by up to several hundred MeV. That effect does not qualitatively alter the picture, suggested by the Faddeev equation, that baryons are quark-diquark composites. However, neglecting the π loops leads to a quantitative overestimate of the nucleon’s axial-vector diquark component.M. B. Hecht, C. D. Roberts, M. Oettel, A. W. Thomas, S. M. Schmidt, P. C. Tand
- …