108 research outputs found
Synthesis and Reactivity of the Fluoro Complex <i>trans</i>-[Pd(F)(4-C<sub>5</sub>NF<sub>4</sub>)Â(<sup><i>i</i></sup>Pr<sub>2</sub>PCH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>)<sub>2</sub>]: C–F Bond Formation and Catalytic C–F Bond Activation Reactions
The reaction of [PdÂ(Me)<sub>2</sub>(tmeda)] (tmeda = <i>N</i>,<i>N</i>,<i>N</i>′,<i>N</i>′-tetramethylethylendiamine) with the phosphine <sup><i>i</i></sup>Pr<sub>2</sub>PCH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub> resulted in the formation of the palladium(0) complex
[PdÂ(<sup><i>i</i></sup>Pr<sub>2</sub>PCH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>)<sub>2</sub>] (<b>1</b>). Treatment
of <b>1</b> with pentafluoropyridine at room temperature yielded
the
C–F activation product <i>trans</i>-[PdÂ(F)Â(4-C<sub>5</sub>NF<sub>4</sub>)Â(<sup><i>i</i></sup>Pr<sub>2</sub>PCH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>)<sub>2</sub>] (<b>2</b>). The triflato and bromo complexes <i>trans</i>-[PdÂ(OTf)Â(4-C<sub>5</sub>NF<sub>4</sub>)Â(<sup><i>i</i></sup>Pr<sub>2</sub>PCH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>)<sub>2</sub>] (<b>4</b>) and <i>trans</i>-[PdÂ(Br)Â(4-C<sub>5</sub>NF<sub>4</sub>)Â(<sup><i>i</i></sup>Pr<sub>2</sub>PCH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>)<sub>2</sub>] (<b>5</b>) could be prepared on reaction of complex <b>2</b> with EtOTf
or 3-bromopropene, respectively. Treatment of <b>2</b> with
Me<sub>3</sub>SiCl or HBpin (HBpin = 4,4,5,5-tetramethyl-1,3,2-dioxaborolane,
pinacolborane) effects the formation of <i>trans</i>-[PdÂ(Cl)Â(4-C<sub>5</sub>NF<sub>4</sub>)Â(<sup><i>i</i></sup>Pr<sub>2</sub>PCH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>)<sub>2</sub>] (<b>6</b>) and <i>trans</i>-[PdÂ(H)Â(4-C<sub>5</sub>NF<sub>4</sub>)Â(<sup><i>i</i></sup>Pr<sub>2</sub>PCH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>)<sub>2</sub>] (<b>7</b>). In
catalytic experiments pentafluoropyridine could be converted into
the 4-aryl-tetrafluoropyridines (<b>8</b>, aryl = Ph; <b>9</b>, aryl = Tol) and into 2,3,5,6-tetrafluoropyridine in the
presence of the boronic acids PhBÂ(OH)<sub>2</sub>, TolBÂ(OH)<sub>2</sub>, or HBpin when 5 mol % of <b>2</b> is employed as catalyst
Synthesis and Reactivity of the Fluoro Complex <i>trans</i>-[Pd(F)(4-C<sub>5</sub>NF<sub>4</sub>)Â(<sup><i>i</i></sup>Pr<sub>2</sub>PCH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>)<sub>2</sub>]: C–F Bond Formation and Catalytic C–F Bond Activation Reactions
The reaction of [PdÂ(Me)<sub>2</sub>(tmeda)] (tmeda = <i>N</i>,<i>N</i>,<i>N</i>′,<i>N</i>′-tetramethylethylendiamine) with the phosphine <sup><i>i</i></sup>Pr<sub>2</sub>PCH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub> resulted in the formation of the palladium(0) complex
[PdÂ(<sup><i>i</i></sup>Pr<sub>2</sub>PCH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>)<sub>2</sub>] (<b>1</b>). Treatment
of <b>1</b> with pentafluoropyridine at room temperature yielded
the
C–F activation product <i>trans</i>-[PdÂ(F)Â(4-C<sub>5</sub>NF<sub>4</sub>)Â(<sup><i>i</i></sup>Pr<sub>2</sub>PCH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>)<sub>2</sub>] (<b>2</b>). The triflato and bromo complexes <i>trans</i>-[PdÂ(OTf)Â(4-C<sub>5</sub>NF<sub>4</sub>)Â(<sup><i>i</i></sup>Pr<sub>2</sub>PCH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>)<sub>2</sub>] (<b>4</b>) and <i>trans</i>-[PdÂ(Br)Â(4-C<sub>5</sub>NF<sub>4</sub>)Â(<sup><i>i</i></sup>Pr<sub>2</sub>PCH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>)<sub>2</sub>] (<b>5</b>) could be prepared on reaction of complex <b>2</b> with EtOTf
or 3-bromopropene, respectively. Treatment of <b>2</b> with
Me<sub>3</sub>SiCl or HBpin (HBpin = 4,4,5,5-tetramethyl-1,3,2-dioxaborolane,
pinacolborane) effects the formation of <i>trans</i>-[PdÂ(Cl)Â(4-C<sub>5</sub>NF<sub>4</sub>)Â(<sup><i>i</i></sup>Pr<sub>2</sub>PCH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>)<sub>2</sub>] (<b>6</b>) and <i>trans</i>-[PdÂ(H)Â(4-C<sub>5</sub>NF<sub>4</sub>)Â(<sup><i>i</i></sup>Pr<sub>2</sub>PCH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>)<sub>2</sub>] (<b>7</b>). In
catalytic experiments pentafluoropyridine could be converted into
the 4-aryl-tetrafluoropyridines (<b>8</b>, aryl = Ph; <b>9</b>, aryl = Tol) and into 2,3,5,6-tetrafluoropyridine in the
presence of the boronic acids PhBÂ(OH)<sub>2</sub>, TolBÂ(OH)<sub>2</sub>, or HBpin when 5 mol % of <b>2</b> is employed as catalyst
Synthesis and Reactivity of the Fluoro Complex <i>trans</i>-[Pd(F)(4-C<sub>5</sub>NF<sub>4</sub>)Â(<sup><i>i</i></sup>Pr<sub>2</sub>PCH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>)<sub>2</sub>]: C–F Bond Formation and Catalytic C–F Bond Activation Reactions
The reaction of [PdÂ(Me)<sub>2</sub>(tmeda)] (tmeda = <i>N</i>,<i>N</i>,<i>N</i>′,<i>N</i>′-tetramethylethylendiamine) with the phosphine <sup><i>i</i></sup>Pr<sub>2</sub>PCH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub> resulted in the formation of the palladium(0) complex
[PdÂ(<sup><i>i</i></sup>Pr<sub>2</sub>PCH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>)<sub>2</sub>] (<b>1</b>). Treatment
of <b>1</b> with pentafluoropyridine at room temperature yielded
the
C–F activation product <i>trans</i>-[PdÂ(F)Â(4-C<sub>5</sub>NF<sub>4</sub>)Â(<sup><i>i</i></sup>Pr<sub>2</sub>PCH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>)<sub>2</sub>] (<b>2</b>). The triflato and bromo complexes <i>trans</i>-[PdÂ(OTf)Â(4-C<sub>5</sub>NF<sub>4</sub>)Â(<sup><i>i</i></sup>Pr<sub>2</sub>PCH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>)<sub>2</sub>] (<b>4</b>) and <i>trans</i>-[PdÂ(Br)Â(4-C<sub>5</sub>NF<sub>4</sub>)Â(<sup><i>i</i></sup>Pr<sub>2</sub>PCH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>)<sub>2</sub>] (<b>5</b>) could be prepared on reaction of complex <b>2</b> with EtOTf
or 3-bromopropene, respectively. Treatment of <b>2</b> with
Me<sub>3</sub>SiCl or HBpin (HBpin = 4,4,5,5-tetramethyl-1,3,2-dioxaborolane,
pinacolborane) effects the formation of <i>trans</i>-[PdÂ(Cl)Â(4-C<sub>5</sub>NF<sub>4</sub>)Â(<sup><i>i</i></sup>Pr<sub>2</sub>PCH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>)<sub>2</sub>] (<b>6</b>) and <i>trans</i>-[PdÂ(H)Â(4-C<sub>5</sub>NF<sub>4</sub>)Â(<sup><i>i</i></sup>Pr<sub>2</sub>PCH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>)<sub>2</sub>] (<b>7</b>). In
catalytic experiments pentafluoropyridine could be converted into
the 4-aryl-tetrafluoropyridines (<b>8</b>, aryl = Ph; <b>9</b>, aryl = Tol) and into 2,3,5,6-tetrafluoropyridine in the
presence of the boronic acids PhBÂ(OH)<sub>2</sub>, TolBÂ(OH)<sub>2</sub>, or HBpin when 5 mol % of <b>2</b> is employed as catalyst
Zinc Complexes with the N‑Donor-Functionalized Cyclopentadienyl Ligand C<sub>5</sub>Me<sub>4</sub>(CH<sub>2</sub>)<sub>2</sub>NMe<sub>2</sub>
The amino-functionalized zincocene [ZnCp<sup>N</sup><sub>2</sub>] (<b>4</b>; Cp<sup>N</sup> = C<sub>5</sub>Me<sub>4</sub>(CH<sub>2</sub>)<sub>2</sub>NMe<sub>2</sub>), which is the first
mononuclear
zincocene with two donor-functionalized cyclopentadienyl ligands,
was prepared through treatment of KCp<sup>N</sup> with ZnCl<sub>2</sub> in a 2/1 ratio. X-ray crystallography reveals the chelating binding
mode of each Cp<sup>N</sup> ligand via an η<sup>1</sup>-coordinated
Cp ring and the amino group. The structural dynamics of <b>4</b> in solution were examined by variable-temperature <sup>1</sup>H
NMR spectroscopy, and decoalescence of the NMR signals was found at
low temperatures. Reacting <b>4</b> with [ZnR<sub>2</sub>] (R
= Et, Cp*) yields the monocyclopentadienyl and mixed-ring donor-functionalized
complexes [ZnEtCp<sup>N</sup>] (<b>5</b>) and [ZnCp*Cp<sup>N</sup>] (<b>6</b>). In contrast to the reaction of KCp<sup>N</sup> with ZnCl<sub>2</sub> in a 2/1 ratio, which yields the zincocene <b>4</b>, the reaction in a 1/1 ratio results exclusively in the
formation of the chlorido-bridged dimer [ZnÂ(μ-Cl)ÂCp<sup>N</sup>]<sub>2</sub> (<b>7</b>). This compound is comparable to [ZnÂ(μ-Cl)ÂCp*Â(THF)]<sub>2</sub> (<b>8</b>), which crystallizes from a THF solution
of equimolar amounts of [ZnCp*<sub>2</sub>] (<b>1</b>) and ZnCl<sub>2</sub>
C–H and C–F Bond Activations at a Rhodium(I) Boryl Complex: Reaction Steps for the Catalytic Borylation of Fluorinated Aromatics
Treatment of the rhodiumÂ(I) boryl
complex [RhÂ(Bpin)Â(PEt<sub>3</sub>)<sub>3</sub>] (<b>1</b>, pin
= pinacolato = O<sub>2</sub>C<sub>2</sub>Me<sub>4</sub>) with pentafluorobenzene,
1,3,5-trifluorobenzene,
1,3-difluorobenzene, or 3,5-difluoropyridine led to C–H activation
reactions to give the aryl complexes [RhÂ(C<sub>6</sub>F<sub>5</sub>)Â(PEt<sub>3</sub>)<sub>3</sub>] (<b>4</b>), [RhÂ(2,4,6-C<sub>6</sub>F<sub>3</sub>H<sub>2</sub>)Â(PEt<sub>3</sub>)<sub>3</sub>]
(<b>5</b>), [RhÂ(2,6-C<sub>6</sub>F<sub>2</sub>H<sub>3</sub>)Â(PEt<sub>3</sub>)<sub>3</sub>] (<b>6</b>), and [RhÂ{4-(3,5-C<sub>5</sub>NF<sub>2</sub>H<sub>2</sub>)}Â(PEt<sub>3</sub>)<sub>3</sub>] (<b>8</b>). For <b>5</b>, <b>6</b>, and <b>8</b> consecutive reactions with <i>in situ</i> generated HBpin
occurred to yield [RhÂ(H)Â(PEt<sub>3</sub>)<sub>3</sub>] (<b>7</b>) and boronic esters. The boryl complex <b>1</b> gave with
hexafluorobenzene or perfluorotoluene the C–F activation products
[RhÂ(C<sub>6</sub>F<sub>5</sub>)Â(PEt<sub>3</sub>)<sub>3</sub>] (<b>4</b>) and [RhÂ(4-C<sub>6</sub>F<sub>4</sub>CF<sub>3</sub>)Â(PEt<sub>3</sub>)<sub>3</sub>] (<b>9</b>), respectively. The complexes <b>5</b>, <b>6</b>, and <b>9</b> react with B<sub>2</sub>pin<sub>2</sub> to yield <b>1</b> and boronic ester derivatives.
On the basis of these stoichiometric reactions catalytic C–H
and C–F borylation reactions using <b>1</b> or <b>7</b> were developed to generate 2-Bpin-1,3,5-C<sub>6</sub>F<sub>3</sub>H<sub>2</sub>, 2-Bpin-1,3-C<sub>6</sub>F<sub>2</sub>H<sub>3</sub>, and 4-Bpin-C<sub>6</sub>F<sub>4</sub>CF<sub>3</sub> from 1,3,5-trifluorobenzene, 1,3-difluorobenzene,
or perfluorotoluene and B<sub>2</sub>pin<sub>2</sub>. On treatment
of pentafluoropyridine with B<sub>2</sub>pin<sub>2</sub> in the presence
of <b>1</b> or <b>7</b> as catalyst 2-Bpin-C<sub>5</sub>NF<sub>4</sub> was synthesized by C–F borylation at the 2-position.
Using 2,3,5,6-tetrafluoropyridine, B<sub>2</sub>pin<sub>2</sub>, and
catalytic amounts of <b>7</b> led to a C–H borylation
reaction at the 4-position. 4-Bpin-C<sub>5</sub>NF<sub>4</sub> can
also be prepared by the reaction of 2,3,5,6-tetrafluoropyridine with
stoichiometric amounts of HBpin or by the reaction of pentafluoropyridine
with an excess of HBpin in the presence of <b>7</b>, whereas
the reaction of pentafluoropyridine with stoichiometric amounts of
HBpin and 5 mol % <b>7</b> resulted in the formation of 2,3,5,6-tetrafluoropyridine
via hydrodefluorination reaction at the 4-position. This regioselectivity
contrasts the borylation of pentafluoropyridine at the 2-position
with <b>1</b> as catalyst. Overall, the obtained fluorinated
aryl boronic ester derivatives might serve as versatile building blocks
Neutral and Cationic Zinc Complexes with N- and S‑Donor-Functionalized Cyclopentadienyl Ligands
The synthesis of neutral and cationic
zinc cyclopentadienyl (Cp)
complexes with amino and thio donor groups that are attached to the
Cp ring via a side chain is reported. The amino-functionalized zincocene
[ZnCp<sup>3N</sup><sub>2</sub>] (<b>3</b>; Cp<sup>3N</sup> =
C<sub>5</sub>Me<sub>4</sub>(CH<sub>2</sub>)<sub>3</sub>NMe<sub>2</sub>) was prepared in a salt metathesis reaction from KCp<sup>3N</sup> and ZnCl<sub>2</sub>. In the solid-state structure of <b>3</b>, which was determined by single-crystal X-ray diffraction, one of
the Cp<sup>3N</sup> ligands is coordinated as a chelating ligand through
a ring carbon atom and through the amino group, whereas the other
Cp<sup>3N</sup> ligand is bound in a monodentate mode through the
Cp ring only. A reaction of <b>3</b> with ZnEt<sub>2</sub>,
[ZnCp*<sub>2</sub>] (Cp* = C<sub>5</sub>Me<sub>5</sub>), and [ZnCp<sup>2N</sup><sub>2</sub>] (<b>2</b>; Cp<sup>2N</sup> = C<sub>5</sub>Me<sub>4</sub>(CH<sub>2</sub>)<sub>2</sub>NMe<sub>2</sub>) gave the
heteroleptic complexes [ZnEtCp<sup>3N</sup>] (<b>4</b>), [ZnCp*Cp<sup>3N</sup>] (<b>5</b>), and [ZnCp<sup>3N</sup>Cp<sup>2N</sup>] (<b>6</b>), respectively. The incorporation of a second amino
group in the same side chain led to the formation of the mononuclear
zinc chlorido complex [ZnClCp<sup>tmeda</sup>] (<b>7</b>; Cp<sup>tmeda</sup> = C<sub>5</sub>Me<sub>4</sub>(CH<sub>2</sub>)<sub>2</sub>NMeÂ(CH<sub>2</sub>)<sub>2</sub>NMe<sub>2</sub>), in which the Cp<sup>tmeda</sup> ligand is bound in a tridentate coordination mode. In
addition, the thio-functionalized zincocene [ZnCp<sup>2S</sup><sub>2</sub>] (<b>8</b>; Cp<sup>2S</sup> = C<sub>5</sub>Me<sub>4</sub>(CH<sub>2</sub>)<sub>2</sub>SMe) was obtained and shown to exhibit
an intramolecular coordination by the sulfur atoms. Starting from
the neutral complexes <b>2</b>, <b>3</b>, and <b>8</b>, the cationic compounds [ZnCp<sup>D</sup>(py)<sub>2</sub>]<sup>+</sup>[BAr<sup>F</sup><sub>4</sub>]<sup>−</sup> (Cp<sup>D</sup> =
Cp<sup>2N</sup> (<b>9</b>), Cp<sup>3N</sup> (<b>10</b>), Cp<sup>2S</sup> (<b>11</b>); py = pyridine; BAr<sup>F</sup><sub>4</sub> = BÂ{3,5-(CF<sub>3</sub>)<sub>2</sub>C<sub>6</sub>H<sub>3</sub>}<sub>4</sub>) were obtained either by protonation or upon
reaction with an electrophile in the presence of pyridine. In these
cationic complexes the highly electrophilic zinc center is stabilized
by intramolecular coordination through the donor groups
Zinc Complexes with the N‑Donor-Functionalized Cyclopentadienyl Ligand C<sub>5</sub>Me<sub>4</sub>(CH<sub>2</sub>)<sub>2</sub>NMe<sub>2</sub>
The amino-functionalized zincocene [ZnCp<sup>N</sup><sub>2</sub>] (<b>4</b>; Cp<sup>N</sup> = C<sub>5</sub>Me<sub>4</sub>(CH<sub>2</sub>)<sub>2</sub>NMe<sub>2</sub>), which is the first
mononuclear
zincocene with two donor-functionalized cyclopentadienyl ligands,
was prepared through treatment of KCp<sup>N</sup> with ZnCl<sub>2</sub> in a 2/1 ratio. X-ray crystallography reveals the chelating binding
mode of each Cp<sup>N</sup> ligand via an η<sup>1</sup>-coordinated
Cp ring and the amino group. The structural dynamics of <b>4</b> in solution were examined by variable-temperature <sup>1</sup>H
NMR spectroscopy, and decoalescence of the NMR signals was found at
low temperatures. Reacting <b>4</b> with [ZnR<sub>2</sub>] (R
= Et, Cp*) yields the monocyclopentadienyl and mixed-ring donor-functionalized
complexes [ZnEtCp<sup>N</sup>] (<b>5</b>) and [ZnCp*Cp<sup>N</sup>] (<b>6</b>). In contrast to the reaction of KCp<sup>N</sup> with ZnCl<sub>2</sub> in a 2/1 ratio, which yields the zincocene <b>4</b>, the reaction in a 1/1 ratio results exclusively in the
formation of the chlorido-bridged dimer [ZnÂ(μ-Cl)ÂCp<sup>N</sup>]<sub>2</sub> (<b>7</b>). This compound is comparable to [ZnÂ(μ-Cl)ÂCp*Â(THF)]<sub>2</sub> (<b>8</b>), which crystallizes from a THF solution
of equimolar amounts of [ZnCp*<sub>2</sub>] (<b>1</b>) and ZnCl<sub>2</sub>
ResA<sup>3</sup>: A Web Tool for Resampling Analysis of Arbitrary Annotations
<div><p>Resampling algorithms provide an empirical, non-parametric approach to determine the statistical significance of annotations in different experimental settings. ResA<sup>3</sup> (<u>Res</u>ampling <u>A</u>nalysis of <u>A</u>rbitrary <u>A</u>nnotations, short: ResA) is a novel tool to facilitate the analysis of enrichment and regulation of annotations deposited in various online resources such as KEGG, Gene Ontology and Pfam or any kind of classification. Results are presented in readily accessible navigable table views together with relevant information for statistical inference. The tool is able to analyze multiple types of annotations in a single run and includes a Gene Ontology annotation feature. We successfully tested ResA using a dataset obtained by measuring incorporation rates of stable isotopes into proteins in intact animals. ResA complements existing tools and will help to evaluate the increasing number of large-scale transcriptomics and proteomics datasets (resa.mpi-bn.mpg.de).</p> </div
Resulting <i>p</i>-values of triplets with <i>R</i> in [500, 1000, 5000, 10000] and stability of significance.
<p>The matrix in (<b>A</b>) shows the scatterplots (lower half) and QQ-plots (upper half) of 521 triplet average <i>p</i>-values down to 10<sup>−6</sup> with sampling rates (<i>R</i>) ranging from 500 to 10000. The histograms in (<b>B</b>) demonstrate the effect of different values for <i>R</i> on the coefficient of variation (CV). The vertical red lines indicate the CV at the 90<sup>th</sup> percentile. The Venn diagram in (<b>C</b>) illustrates the stability of p-values for KEGG terms in a triplicate with <i>R</i> = 1000. The number of terms having a <i>p</i>-value <0.05 ranges from 60 to 62 and 59 terms (∼95%) were present in all replicates.</p
Deletion of single <i>miR-1/133a</i> clusters does not cause gross morphological alterations in the heart but results in decreased ejection fraction in <i>miR-1-1/133a-2</i> mutants after TAC.
<p>(A–C) No morphological abnormalities are discernable on frontal sections through hearts of <i>miR-1-1/133a-2</i> and <i>miR-1-2/133a-2</i> homozygous mutants. (D, E) Transverse aortic constriction led to an increase in wall thickness (D) and left ventricular mass (E) in comparison to sham-operated mice wildtype or <i>miR-1/133a</i> single <i>knock-out</i> mice as measured by MRI. (F) <i>miR-1-1/133a-2</i> but not <i>miR-1-2/133a-2</i> homozygous mutants showed a reduction in ejection fraction compared to wild type mice. (G) TAC-induced pressure overload resulted in a comparable increase in ANP levels in single cluster mutants and wild type controls. (H, I) qRT-PCR analysis (Taqman) of miR-1 and miR-133a expression in different single cluster mutant strains after TAC. No significant increase of miR-1 expression in <i>miR-1-1/133a-2</i> and <i>miR-1-2/133a-1</i> mutants after TAC compared to sham-operated mice while expression levels of miR-133a dropped slightly after TAC in both single cluster mutants.</p
- …