330 research outputs found

    Human Granulocyte-Macrophage Colony Stimulating Factor: An Effective Direct Activator of Human Polymorphonuclear Neutrophilic Granulocytes

    Get PDF
    Granulocyet-macrophage colony-stimulating factor (GM-CSF) was shown to modulate different granulocyte functions. In the present study we investigated the effect of purified and recombinant human GM-CSF, particularly on the oxidative metabolism of isolated human granulocytes. In addition, ultrastructural changes upon stimulation were evaluated. For detection of granulocyte activation the following assay systems were used: 1) lucigenin-dependent chemiluminescence (CL),2) superoxide-dismutase (SOD) inhibitable cytochrome C-reduction (superoxide),3) horseradish peroxidase-mediated oxidation of phenol red (hydrogen peroxide),4) release of myeloperoxidase, 5) ultrastructural detection of hydrogen peroxide-production, and 6) scanning and transmission electron microscopy (SEM and TEM, respectively). A significant CL response was seen upon stimulation with recombinant human GM-CSF at concentrations ranging from 1 to 103 U/ml. The CL response started within 5-10 min with a maximum at 60 – 90 min and lasted more than 3 h. Thereafter granulocytes were completely deactivated to restimulation with the same mediator and with Tumor Necrosis Factor, but respondend to other triggers of the oxidative burst, whereas the response to f-met-leu-phe was significantly increased, The CL signal was completely blocked by an antiserum to GM-CSF. Moreover, the response was significantly inhibited by SOD and D-mannitol, suggesting the involvement of distinct reactive oxygen species (ROS) in generating the CL response. Significant amounts of superoxide were detected within 180 min after stimulation with GM-CSF, whereas, release of hydrogen peroxide and peroxidase were only minimal as shown by functional and ultrastructural assays. Activation of granulocytes could be visualized by SEM and TEM. GM-CSF stimulated cells showed an increased adherence to the substratum developing polarized filopodia and an increased number of intercellular vesicles within 30 min after addition of the stimulus. The results clearly demonstrate that GM-CSF directly stimulates granulocytes and, particularly, their oxidative metabolism. Therefore, GM-CSF which is probably released by epidermal cells appears to be a candidate for neutrophil activation in the skin, and thereby may play a crucial role in inflammatory skin diseases

    Detection of a Specific Inhibitor of Interleukin 1 in Sera of UVB-Treated Mice

    Get PDF
    It was recently demonstrated that murine keratinocytes upon irradiation with ultraviolet (UV) light release an immunosuppressive cytokine which blocks the biological activity of interleukin 1 (IL 1). This epidermal cell derived inhibitor (EC-contra IL 1) exhibits a molecular weight of 40 kD and a pI of approximately 9.0. EC-contra IL 1 in vivo possibly may penetrate through the basal lamina and subsequently cause systemic immunosuppression following UV-exposure. In the present study, we tested whether EC-contra IL 1 can also be detected in vivo. Serum samples obtained from total body UV-exposed mice were subjected to HPLC gel filtration and tested for IL 1 inhibitory activity. While a non-specific high molecular weight (300 kD) suppressor factor was detected in sera of both UV-exposed and sham treated control mice, a specific IL 1 inhibitor exhibiting a molecular weight of 40 kD was observed only in sera of UV-exposed mice. This cytokine named serum-contra IL 1 was maximally released 24 h after UV-exposure, exhibited a pI of 9.0, and blocked the activity of natural as well as recombinant interleukin 1 in a dose dependent manner. Serum-contra IL 1 did not suppress interleukin 2 or interleukin 3 and did not inhibit spontaneous cell proliferation. The present biochemical and biologic data suggest that serum-contra IL 1 and EC-contra IL 1 appear to be closely related if not identical. These observations therefore indicate that keratinocytes upon UV-irradiation in vivo release EC-contra IL 1 which may at least partly be responsible for the immunosuppression following UV-exposure

    A Prospective, Randomized, Double-blind, Vehicle-controlled, Multi-centre Clinical Trial of Efficacy, Safety and Local Tolerability

    Get PDF
    This study was a prospective, parallel-group, randomized, double-blind, vehicle-controlled, multi-centre clinical trial to compare the efficacy of topical sertaconazole 2% cream with vehicle in reducing chronic pruritus in subjects with atopic dermatitis, and to assess its safety and local tolerability. A total of 70 subjects applied either of the 2 treatments twice daily for a period of 4 weeks on affected, itchy skin areas. Treatment efficacy was evaluated primarily considering the item itch intensity on a 5-point verbal rating scale. Insomnia, state of atopic dermatitis (Scoring Atopic Dermatitis; SCORAD), quality of life and therapy benefit were also assessed. No significant difference between active treatment and vehicle was found at any of the time-points for any of the investigated parameters. Under the experimental conditions of the study, sertaconazole 2% cream did not exert anti-pruritic effects that were better than vehicle in subjects with atopic dermatitis who had chronic pruritus. Trial registration ClinicalTrials.gov #NCT01792713

    The Neuropeptide Alpha-Melanocyte-Stimulating Hormone Is Critically Involved in the Development of Cytotoxic CD8+ T Cells in Mice and Humans

    Get PDF
    BACKGROUND: The neuropeptide alpha-melanocyte-stimulating hormone is well known as a mediator of skin pigmentation. More recently, it has been shown that alpha-melanocyte-stimulating hormone also plays pivotal roles in energy homeostasis, sexual function, and inflammation or immunomodulation. Alpha-melanocyte-stimulating hormone exerts its antiinflammatory and immunomodulatory effects by binding to the melanocortin-1 receptor, and since T cells are important effectors during immune responses, we investigated the effects of alpha-melanocyte-stimulating hormone on T cell function. METHODOLOGY/PRINCIPAL FINDINGS: T cells were treated with alpha-melanocyte-stimulating hormone, and subsequently, their phenotype and function was analyzed in a contact allergy as well as a melanoma model. Furthermore, the relevance of alpha-melanocyte-stimulating hormone-mediated signaling for the induction of cytotoxicity was assessed in CD8(+) T cells from melanoma patients with functional and nonfunctional melanocortin-1 receptors. Here we demonstrate that the melanocortin-1 receptor is expressed by murine as well as human CD8(+) T cells, and we furthermore show that alpha-melanocyte-stimulating hormone/melanocortin-1 receptor-mediated signaling is critical for the induction of cytotoxicity in human and murine CD8(+) T cells. Upon adoptive transfer, alpha-melanocyte-stimulating hormone-treated murine CD8(+) T cells significantly reduced contact allergy responses in recipient mice. Additionally, the presented data indicate that alpha-melanocyte-stimulating hormone via signaling through a functional melanocortin-1 receptor augmented antitumoral immunity by up-regulating the expression of cytotoxic genes and enhancing the cytolytic activity in tumor-specific CD8(+) T cells. CONCLUSIONS/SIGNIFICANCE: Together, these results point to an important role of alpha-melanocyte-stimulating hormone in MHC class I-restricted cytotoxicity. Therefore, treatment of contact allergies or skin cancer with alpha-melanocyte-stimulating hormone or other more stable agonists of melanocortin-1 receptor might ameliorate disease or improve antitumoral immune responses

    Constraints, Histones, and the 30 Nanometer Spiral

    Full text link
    We investigate the mechanical stability of a segment of DNA wrapped around a histone in the nucleosome configuration. The assumption underlying this investigation is that the proper model for this packaging arrangement is that of an elastic rod that is free to twist and that writhes subject to mechanical constraints. We find that the number of constraints required to stabilize the nuclesome configuration is determined by the length of the segment, the number of times the DNA wraps around the histone spool, and the specific constraints utilized. While it can be shown that four constraints suffice, in principle, to insure stability of the nucleosome, a proper choice must be made to guarantee the effectiveness of this minimal number. The optimal choice of constraints appears to bear a relation to the existence of a spiral ridge on the surface of the histone octamer. The particular configuration that we investigate is related to the 30 nanometer spiral, a higher-order organization of DNA in chromatin.Comment: ReVTeX, 15 pages, 18 figure
    corecore