253 research outputs found

    How good is the orthopaedic literature?

    Get PDF
    Randomized trials constitute approximately 3% of the orthopaedic literature Concerns regarding quality of the orthopaedic literature stem from a widespread notion that the overall quality of the surgical literature is in need of improvement. Limitations in surgical research arises primarily from two pervasive issues: 1) A reliance on low levels of evidence to advance surgical knowledge, and 2) Poor reporting quality among the high level surgical evidence that is available. The scarcity of randomized trials may be largely attributable to several unique challenges which make them difficult to conduct. We present characteristics of the orthopaedic literature and address the challenges of conducting randomized trials in surgery

    Molecular Mechanisms Controlling Bone Formation During Fracture Healing and Distraction Osteogenesis

    Get PDF
    Fracture healing and distraction osteogenesis have important applications in orthopedic, maxillofacial, and periodontal treatment. In this review, the cellular and molecular mechanisms that regulate fracture repair are contrasted with bone regeneration that occurs during distraction osteogenesis. While both processes have many common features, unique differences are observed in the temporal appearance and expression of specific molecular factors that regulate each. The relative importance of inflammatory cytokines in normal and diabetic healing, the transforming growth factor beta superfamily of bone morphogenetic mediators, and the process of angiogenesis are discussed as they relate to bone repair. A complete summary of biological activities and functions of various bioactive factors may be found at COPE (Cytokines & Cells Online Pathfinder Encyclopedia), http://www.copewithcytokines.de/cope.cgi

    Limit on the fermion masses in technicolor models

    Full text link
    Recently it has been pointed out that no limits can be put on the scale of fermion mass generation (M)(M) in technicolor models, because the relation between the fermion masses (mf)(m_f) and MM depends on the dimensionality of the interaction responsible for generating the fermion mass. Depending on this dimensionality it may happens that mfm_f does not depend on MM at all. We show that exactly in this case mfm_f may reach its largest value, which is almost saturated by the top quark mass. We make few comments on the question of how large can be a dynamically generated fermion mass.Comment: 5 pages, 1 figure, RevTeX

    Diabetes Causes the Accelerated Loss of Cartilage During Fracture Repair Which Is Reversed by Insulin Treatment

    Get PDF
    Fracture healing in diabetic individuals and in animal models of diabetes is impaired. To investigate mechanisms by which diabetes may affect fracture healing we focused on the transition from cartilage to bone, a midpoint in the fracture healing process. Femoral fractures were induced in mice rendered diabetic by multiple low dose streptozotocin treatment and compared to matching normoglycemic mice. One group of diabetic animals was treated with slow release insulin to maintain normal serum glucose levels. The results indicate that there was relatively little difference in the initial formation of the fracture callus on day 10. However, on day 16 the diabetic group had significantly smaller callus, greater loss of cartilage and enhanced osteoclastogenesis that was normalized by treatment with insulin when assessed by histomorphometric analysis. Chondrocyte apoptosis was significantly higher in diabetic mice and this increase was blocked by insulin. These changes were accompanied by diabetes-increased mRNA levels of RANKL, TNF-α, and ADAMTS-4 and -5 measured by real-time PCR, which was reversed by insulin treatment. On days 16 and 22 bone formation within the callus of diabetic mice was significantly less than the normoglycemic and brought to normal levels by insulin treatment. These results suggest that a significant effect of diabetes on fracture healing is increased chondrocyte apoptosis and osteoclastogenesis that accelerates the loss of cartilage and reduces the anlage for endochondral bone formation during fracture repair. That insulin reverses these effects demonstrates that they are directly related to the diabetic condition

    BMP2 Is Essential for Post Natal Osteogenesis but Not for Recruitment of Osteogenic Stem Cells

    Get PDF
    The effects of BMP2 on bone marrow stromal cell differentiation and bone formation after bone marrow ablation were determined using C57 BL/6J (B6) mice. Inhibition of BMP2 expression with lentiviral BMP2 shRNA prevented both mineralized nodule formation in vitro and bone formation in vivo, and blocked the expression of Runx2 and osterix, transcriptional determinants of terminal osteogenic differentiation. No effect was observed on the expression of Sox9, a transcription factor, which is the one of the first transcriptional determinant to be expressed in committed chondroprogenitor and osteoprogenitor cells. In vitro studies showed that exogenously added BMP7 rescued the expression of osterix and enhanced the expression of Sox9, but had no effect on the expression of Runx2, while it only partially recovered the development of mineral deposition in the cultures. On the other hand, the exogenous addition of BMP2 rescued both Runx2 and osterix expression, did not enhance the expression of Sox9, but fully recovered the inhibition of mineral deposition in the cultures. Using antibodies against CD146 and Sox9, immunohistological examination of the cell populations found in the medullary space three days after bone marrow ablation, showed qualitatively equal numbers of cells expressing these skeletal progenitor and stem cell markers in control and BMP2 shRNA treated animals. Fluorescence Activated Cell Sorting (FACS) analysis of the cells found with the marrow cavities at three days after marrow ablation using CD146 antibody showed near equal numbers of immunopositive cells in both control and shRNA treated animals. In summary, the differences observed in vitro for BMP2 and BMP7 on osteogenic gene expression and mineralization suggest that they have differing effects on bone cell differentiation. These results further demonstrate that in vivo BMP2 is a central morphogenetic regulator of post natal osteoprogenitor differentiation, but does not affect recruitment of progenitors to the osteoblastic lineage

    Chemokine Expression Is Upregulated in Chondrocytes in Diabetic Fracture Healing

    Get PDF
    Chemokines are thought to play an important role in several aspects of bone metabolism including the recruitment of leukocytes and the formation of osteoclasts. We investigated the impact of diabetes on chemokine expression in normal and diabetic fracture healing. Fracture of the femur was performed in streptozotocin-induced diabetic and matched normoglycemic control mice. Microarray analysis was carried out and chemokine mRNA levels in vivo were assessed. CCL4 were examined in fracture calluses by immunohistochemistry and the role of TNF in diabetes-enhanced expression was investigated by treatment of animals with the TNF-specific inhibitor, pegsunercept. In vitro studies were conducted with ATDC5 chondrocytes. Diabetes significantly upregulated mRNA levels of several chemokines in vivo including CCL4, CCL8, CCL6, CCL11, CCL20, CCL24, CXCL2, CXCL5 and chemokine receptors CCR5 and CXCR4. Chondrocytes were identified as a significant source of CCL4 and its expression in diabetic fractures was dependent on TNF (P \u3c 0.05). TNF-α significantly increased mRNA levels of several chemokines in vitro which were knocked down with FOXO1 siRNA (P \u3c 0.05). CCL4 expression at the mRNA and proteins levels was induced by FOXO1 over-expression and reduced by FOXO1 knockdown. The current studies point to the importance of TNF-α as a mechanism for diabetes enhanced chemokine expression by chondrocytes, which may contribute to the accelerated loss of cartilage observed in diabetic fracture healing. Moreover, in vitro results point to FOXO1 as a potentially important transcription factor in mediating this effect

    Diabetes Reduces Mesenchymal Stem Cells in Fracture Healing Through a TNFα-Mediated Mechanism

    Get PDF
    Aims/hypothesis Diabetes interferes with bone formation and impairs fracture healing, an important complication in humans and animal models. The aim of this study was to examine the impact of diabetes on mesenchymal stem cells (MSCs) during fracture repair. Methods Fracture of the long bones was induced in a streptozotocin-induced type 1 diabetic mouse model with or without insulin or a specific TNFα inhibitor, pegsunercept. MSCs were detected with cluster designation-271 (also known as p75 neurotrophin receptor) or stem cell antigen-1 (Sca-1) antibodies in areas of new endochondral bone formation in the calluses. MSC apoptosis was measured by TUNEL assay and proliferation was measured by Ki67 antibody. In vitro apoptosis and proliferation were examined in C3H10T1/2 and human-bone-marrow-derived MSCs following transfection with FOXO1 small interfering (si)RNA. Results Diabetes significantly increased TNFα levels and reduced MSC numbers in new bone area. MSC numbers were restored to normal levels with insulin or pegsunercept treatment. Inhibition of TNFα significantly reduced MSC loss by increasing MSC proliferation and decreasing MSC apoptosis in diabetic animals, but had no effect on MSCs in normoglycaemic animals. In vitro experiments established that TNFα alone was sufficient to induce apoptosis and inhibit proliferation of MSCs. Furthermore, silencing forkhead box protein O1 (FOXO1) prevented TNFα-induced MSC apoptosis and reduced proliferation by regulating apoptotic and cell cycle genes. Conclusions/interpretation Diabetes-enhanced TNFα significantly reduced MSC numbers in new bone areas during fracture healing. Mechanistically, diabetes-enhanced TNFα reduced MSC proliferation and increased MSC apoptosis. Reducing the activity of TNFα in vivo may help to preserve endogenous MSCs and maximise regenerative potential in diabetic patients

    Diminished Bone Formation During Diabetic Fracture Healing Is Related to the Premature Resorption of Cartilage Associated with Increased Osteoclast Activity

    Get PDF
    Histological and molecular analysis of fracture healing in normal and diabetic animals showed significantly enhanced removal of cartilage in diabetic animals. Increased cartilage turnover was associated with elevated osteoclast numbers, a higher expression of genes that promote osteoclastogenesis, and diminished primary bone formation. Introduction Diminished bone formation, an increased incidence of nonunions, and delayed fracture healing have been observed in animal models and in patients with diabetes. Fracture healing is characterized by the formation of a stabilizing callus in which cartilage is formed and then resorbed and replaced by bone. To gain insight into how diabetes affects fracture healing, studies were carried out focusing on the impact of diabetes on the transition from cartilage to bone. Materials and Methods A low-dose treatment protocol of streptozotocin in CD-1 mice was used to induce a type 1 diabetic condition. After mice were hyperglycemic for 3 weeks, controlled closed simple transverse fractures of the tibia were induced and fixed by intramedullary pins. Histomorphometric analysis of the tibias obtained 12, 16, and 22 days after fracture was performed across the fracture callus at 0.5 mm proximal and distal increments using computer-assisted image analysis. Another group of 16-day samples were examined by μCT. RNA was isolated from a separate set of animals, and the expression of genes that reflect the formation and removal of cartilage and bone was measured by real-time PCR. Results Molecular analysis of collagen types II and X mRNA expression showed that cartilage formation was the same during the initial period of callus formation. Histomorphometric analysis of day 12 fracture calluses showed that callus size and cartilage area were also similar in normoglycemic and diabetic mice. In contrast, on day 16, callus size, cartilage tissue, and new bone area were 2.0-, 4.4-, and 1.5-fold larger, respectively, in the normoglycemic compared with the diabetic group (p \u3c 0.05). Analysis of μCT images indicated that the bone volume in the normoglycemic animals was 38% larger than in diabetic animals. There were 78% more osteoclasts in the diabetic group compared with the normoglycemic group (p \u3c 0.05) on day 16, consistent with the reduction in cartilage. Real-time PCR showed significantly elevated levels of mRNA expression for TNF-α, macrophage-colony stimulating factor, RANKL, and vascular endothelial growth factor-A in the diabetic group. Similarly, the mRNA encoding ADAMTS 4 and 5, major aggrecanases that degrade cartilage, was also elevated in diabetic animals. Conclusions These results suggest that impaired fracture healing in diabetes is characterized by increased rates of cartilage resorption. This premature loss of cartilage leads to a reduction in callus size and contributes to decreased bone formation and mechanical strength frequently reported in diabetic fracture healing

    TNFα Contributes to Diabetes Impaired Angiogenesis in Fracture Healing

    Get PDF
    Diabetes increases the likelihood of fracture, interferes with fracture healing and impairs angiogenesis. The latter may be significant due to the critical nature of angiogenesis in fracture healing. Although it is known that diabetes interferes with angiogenesis the mechanisms remain poorly defined. We examined fracture healing in normoglycemic and streptozotocin-induced diabetic mice and quantified the degree of angiogenesis with antibodies to three different vascular markers, CD34, CD31 and Factor VIII. The role of diabetes-enhanced inflammation was investigated by treatment of the TNFα-specific inhibitor, pegsunercept starting 10 days after induction of fractures. Diabetes decreased both angiogenesis and VEGFA expression by chondrocytes. The reduced angiogenesis and VEGFA expression in diabetic fractures was rescued by specific inhibition of TNF in vivo. In addition, the TNF inhibitor rescued the negative effect of diabetes on endothelial cell proliferation and endothelial cell apoptosis. The effect of TNFα in vitro was enhanced by high glucose and an advanced glycation endproduct to impair microvascular endothelial cell proliferation and tube formation and to stimulate apoptosis. The effect of TNF, high glucose and an AGE was mediated by the transcription factor FOXO1, which increased expression of p21 and caspase-3. These studies indicate that inflammation plays a major role in diabetes-impaired angiogenesis in endochondral bone formation through its effect on microvascular endothelial cells and FOXO1

    Role of Fas and Treg Cells in Fracture Healing as Characterized in the Fas-Deficient (lpr) Mouse Model of Lupus

    Get PDF
    Previous studies showed that loss of tumor necrosis factor α (TNFα) signaling delayed fracture healing by delaying chondrocyte apoptosis and cartilage resorption. Mechanistic studies showed that TNFα induced Fas expression within chondrocytes; however, the degree to which chondrocyte apoptosis is mediated by TNFα alone or dependent on the induction of Fas is unclear. This question was addressed by assessing fracture healing in Fas-deficient B6.MRL/Faslpr/J mice. Loss of Fas delayed cartilage resorption but also lowered bone fraction in the calluses. The reduced bone fraction was related to elevated rates of coupled bone turnover in the B6.MRL/Faslpr/J calluses, as evidenced by higher osteoclast numbers and increased osteogenesis. Analysis of the apoptotic marker caspase 3 showed fewer positive chondrocytes and osteoclasts in calluses of B6.MRL/Faslpr/J mice. To determine if an active autoimmune state contributed to increased bone turnover, the levels of activated T cells and Treg cells were assessed. B6.MRL/Faslpr/J mice had elevated Treg cells in both spleens and bones of B6.MRL/Faslpr/J but decreased percentage of activated T cells in bone tissues. Fracture led to ∼30% to 60% systemic increase in Treg cells in both wild-type and B6.MRL/Faslpr/J bone tissues during the period of cartilage formation and resorption but either decreased (wild type) or left unchanged (B6.MRL/Faslpr/J) the numbers of activated T cells in bone. These results show that an active autoimmune state is inhibited during the period of cartilage resorption and suggest that iTreg cells play a functional role in this process. These data show that loss of Fas activity specifically in chondrocytes prolonged the life span of chondrocytes and that Fas synergized with TNFα signaling to mediate chondrocyte apoptosis. Conversely, loss of Fas systemically led to increased osteoclast numbers during later periods of fracture healing and increased osteogenesis. These findings suggest that retention of viable chondrocytes locally inhibits osteoclast activity or matrix proteolysis during cartilage resorption
    corecore