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1Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
2Department of Periodontology and Oral Biology, University of Pennsylvania School of Dental
Medicine, Philadelphia, PA; Department of Periodontics, University of Pennsylvania School of
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Abstract
Chemokines are thought to play an important role in several aspects of bone metabolism including
the recruitment of leukocytes and the formation of osteoclasts. We investigated the impact of
diabetes on chemokine expression in normal and diabetic fracture healing. Fracture of the femur
was performed in streptozotocin-induced diabetic and matched normoglycemic control mice.
Microarray analysis was carried out and chemokine mRNA levels in vivo were assessed. CCL4
were examined in fracture calluses by immunohistochemistry and the role of TNF in diabetes-
enhanced expression was investigated by treatment of animals with the TNF-specific inhibitor,
pegsunercept. In vitro studies were conducted with ATDC5 chondrocytes. Diabetes significantly
upregulated mRNA levels of several chemokines in vivo including CCL4, CCL8, CCL6, CCL11,
CCL20, CCL24, CXCL2, CXCL5 and chemokine receptors CCR5 and CXCR4. Chondrocytes
were identified as a significant source of CCL4 and its expression in diabetic fractures was
dependent on TNF in diabetic fractures (P<0.05). TNF-α significantly increased mRNA levels of
several chemokines in vitro which were knocked down with FOXO1 siRNA (P<0.05). CCL4
expression at the mRNA and proteins levels was induced by FOXO1 over-expression and reduced
by FOXO1 knockdown. The current studies point to the importance of TNF-α as a mechanism for
diabetes enhanced chemokine expression by chondrocytes, which may contribute to the
accelerated loss of cartilage observed in diabetic fracture healing. Moreover, in vitro results point
to FOXO1 as a potentially important transcription factor in mediating this effect.

Introduction
Chemokines are small (8–11 kDa) chemotactic cytokines secreted by many cell types in
response to growth factors, inflammatory cytokines, and cancer cells [1]. Chemokines are
classified into two major subfamilies by their N terminal cysteines, CXC, CC, and two
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minor families, C and CX3C. Some chemokines interact with a single high affinity
chemokine receptor while others bind multiple chemokine receptors [1].

Osteoclasts originate from hematopoietic precursors of the monocyte-macrophage lineage
that reside within the bone marrow. Chemokines that are chemotactic for cells of this lineage
are thought to be important in trafficking of osteoclast precursors and to modulate the
lifespan of osteoclasts [2, 3]. A number of chemokines have been reported to recruit
osteoclast precursors or stimulate osteoclastogenesis including CCL2, CCL3, CCL4,
CXCL8 and CXCL12 [4]. In conditions where there is increased bone resorption these
chemokines are elevated such as arthritis, osteolytic bone disease of multiple myeloma and
periodontal disease [5-8]. CCL3 and CCL4 are constitutively secreted by multiple myeloma
cells and are linked to the development of osteolytic bone lesions [9]. CCL3-positive cells
are increased with increasing severity of periodontal disease and MCP-1/CCL2, CCL3, and
CCL4 are present in periapical granulomas [10]. The capacity of CCL3 to promote bone
resorption has been shown to occur through RANKL dependent and RANKL independent
pathways and has recently been linked to suppression of coupled bone formation in
leukemia [11]. Interestingly, RANKL also induces the production chemokines, suggesting
an amplification loop during recruitment of precursors and differentiation of osteoclasts
[12]. Elevated levels of SDF1/CXCL12 in the synovial and bone tissue of patients with
rheumatoid arthritis are correlated to pathological bone loss caused by an increase in the
recruitment and activation of osteoclasts at sites of local inflammation [13]. Collectively,
these studies indicate a relationship between chemokine expression and osteoclastic bone
resorption.

We have reported previously that impaired diabetic fracture healing is associated with
elevated TNF-α levels and osteoclast numbers [14]. Moreover, inhibition of TNF decreases
diabetes-enhanced cartilage degradation and osteoclastogenesis [15, 16]. In the current study
we examined chemokine expression in diabetic fracture repair and the role of the FOXO1
transcription in mediating TNF induced chemokine and chemokine receptor mRNA levels in
vitro. The results show that diabetic fracture healing is associated with elevated levels of
chemokines. CCL3 was examined by immunohistochemistry and shown to be expressed at
higher levels in diabetic fractures, predominantly in hypertrophic chondrocytes in a TNF
dependent manner. In vitro experiments using BMP stimulated ATDC5 and C3H10T1/2
cells with a hypertrophic chondrocyte phenotype demonstrated that FOXO1 knockdown
decreased the expression of chemokines that were upregulated by TNF stimulation. Due to
the capacity of chemokines to enhance inflammation through stimulation and activation of
leukocytes and osteoclastogenesis, the results point to the possible involvement of
chemokines in impaired diabetic fracture repair.

Material and Methods
Induction of Type 1 Diabetes and Femoral fracture

All experiments were conducted in conformity with Federal and USDA guidelines and had
Institutional Animal Care & Use Committee (IACUC). Eight week old male CD-1 mice
were purchased from Charles River Laboratories (Wilmington, MA). Diabetes was induced
by intraperitoneal injection of streptozotocin (40mg/kg) (Sigma, St. Louis, MO) daily for 5
days [17]. A group of mice were treated with vehicle alone (10 mM citrate). Evaluation of
blood glucose levels was performed using blood samples taken from the tail (Accu-Chek,
Roche Diagnostics, Indianapolis, IN). When the blood glucose levels exceeded 250 mg/dl
mice were considered diabetic. Transverse closed fractures of the femur were performed in
diabetic mice that were hyperglycemic for 3 weeks as described in [14, 17-19]. Fixation was
achieved by placement of a 27 gauge spinal needle into the marrow cavity of the femur and
fracture was induced by blunt trauma. Intraperitoneal injection of TNF inhibitor
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pegsunercept (4mg/kg) was undertaken starting on day 10 post fracture and repeated every 3
days until euthanasia. Animals were euthanized at the 10 day and 16 day time points after
fracture. Glycosylated hemoglobin level was measured by Glyco-tek affinity
chromatography (Helena Laboratories, Beaumont, TX) at the time of euthanasia. Results
showed no significant differences between pegsunercept treated and vehicle treated groups
(data not shown).

Histology and Immunohistochemistry
Fixation of the specimens in cold 4% paraformaldehyde was performed for 72 hours
followed by decalcification in cold Immunocal (Decal Corporation, Congers, NY) for 2
weeks. Embedding in paraffin and sectioning were performed as described in [18].
Deparaffinization and antigen retrieval was performed in 10 mM sodium citrate (pH 6.0) at
95 degree for 5 minutes. Specimens then were incubated with 3% hydrogen peroxide for 15
minutes at room temperature. Blocking was done using avidin biotin blocking system
(Vector Laboratories, Burlingame, CA) and non-immune serum matching the secondary
antibody. Incubation with anti MIP-1β /CCL4 antibody purchased from (R&D System) or
matched non-specific IgG at 4C degree overnight was carried out, followed by several
washing and incubation with biotin labeled secondary antibody (Santa Cruz Biotechnology,
Santa Cruz, CA). Detection and visualization were done using an avidin-biotin kit from
Vector Laboratories, and chromogen 3, 3′-diaminobenzidine (Zymed Laboratories Inc,
South San Francisco, CA) and counterstained with hematoxylin. The percentage of
expression of MIP-1β /CCL4in different cell types in the callus was done taking 20
representative fields per callus using the scale shown in Supplemental Table 1. There were
6-7 samples per group. Analysis was done blindly by one examiner with the results
confirmed by second examiner.

mRNA Profiling of Fracture Calluses
Fracture calluses from each group were collected, soft tissue was gently removed and
specimens were snap frozen in liquid nitrogen. RNA extraction from each callus was
performed using Trizol (Life Technologies, Rockville, MD) and the extracted RNA was
purified using RNAeasy MinElute cleanup kit (Qiagen, Valencia, CA). mRNA profiling was
carried out using a PGA Mouse v1.1 array as we have previously described [15, 20].
Preparation of microarray probe and reading of fluorescent intensity were performed by the
Massachusetts General Hospital Microarray Core Facility (Cambridge, MA). Data represent
the mean of four replicates. The data related to chemokines and their receptors were
analyzed and the difference in expression between diabetic and normoglycemic was
analyzed as fold change.

FOXO1 RNAi and Overexpression
ATDC5 were cultured as we have previously described [15]. Cells were then plated in 6
well plates and when reached 70% confluency were transfected with 5nM ON-TARGETplus
SMARTpool siRNAs against FOXO1 or control siRNA (Dharmacon, Chicago, IL) with
Lipofectamine RNAiMAX (Invitrogen, Carlsbad, CA) in media supplemented with FBS
(0.25%) as we have previously described [15]. Supernatant was collected and total RNA was
extracted. Real time PCR was performed using probes and primer sets designed by the
Universal Probe Library Assay Design Center (Roche, Indianapolis). Results were
normalized by reference to mRNA levels of the housekeeping gene L32. mRNA profiling
was carried out with a focused Chemokines and Receptors PCR Microarray (SA
Biosciences, Valencia, CA) according to the manufacturer's instructions using the PCR
Array Data Analysis web portal (SA Biosciences). Data represent the mean values obtained
from three separate replicates. For overexpression of FOXO1 constructs containing the full
length human FOXO1, constitutively active FOXO1AAA that was mutated at the Akt
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phosphorylation sites or vector containing green fluorescent protein (GFP) were purchased
from Addgene (Cambridge, MA). Transfections were performed using SuperFect (Qiagen).
Cell lysates were examined for mRNA levels of CCL3 and CCL4 and supernatants were
examined for protein level of CCL4 by ELISA (R&D Systems, Minneapolis, MN).

Statistical Analysis
Data are presented as mean values ±SEM. Statistical significance between multiple groups
for a given parameter was analyzed by ANOVA with Scheffe's post-hoc test. Results from
immunohistochemistry using a scale from 0 to 5 were analyzed using Kruskal-Wallis non-
parametric analysis of multiple groups and the Mann-Whitney post-hoc test. RNAi
experiments and FOXO1 over-expression experiments were performed two to three times
with similar results. In microarray data, statistical difference between diabetic and
normoglycemic groups were evaluated using Student's T test (p<0.05).

Results
To investigate the effect of diabetes on the expression of chemokines and chemokine
receptors, microarray analysis was carried out using RNA samples from fracture calluses
focusing on the stage of transition from cartilage to bone, day 16 following fracture. The
difference in gene expression between diabetic and normoglycemic groups was considered
significant if the P value was less than 0.05. Diabetic specimens showed upregulation of
several chemokines and their receptors (Table 1) with a significant 1.28 to 5.71 fold increase
in mRNA levels in more than 10 chemokines and receptors in diabetic compared to
normoglycemic mice (p<0.05). Several belonged to the CC subfamily of chemokines such
as CCL4, CCL8, CCL6, CCL11, CCL20, CCL24 and the CC chemokine receptor CCR5
receptor. There was also a significant increase in the expression of CXC chemokines in the
fracture sites of diabetic mice in vivo when compared to normoglycemic mice such as
CXCL2, CXCL5 and the CXC chemokine receptor CXCR4.

Since CCL4 expression has been linked to osteoclastogenesis in inflammatory bone diseases
[21] and was significantly up-regulated in the fracture calluses (Table 2) we further
examined its expression in fracture calluses by immunohistochemistry. The percentage of
CCL4 positive hypertrophic and proliferative chondrocytes was assessed in Figures 1A and
1B, respectively. In the normoglycemic group there was little increase in the expression of
CCL4 in hypertrophic chondrocytes from day 10 to day 16, while there was in the diabetic
group (P<0.05; Figure 1). The increase in the diabetic group was blocked by inhibition of
TNF (P<0.05). The percent hypertrophic chondrocytes that expressed CCL4 was higher than
proliferative chondrocytes in diabetic and normoglycemic groups on both days 10 and 16
(P<0.05; Figure 1A compared to 1B). Examples of CCL4 positive chondrocytes are shown
in Supplemental Figure 1. Semi-quantitative analysis was also performed to examine the
relative expression of CCL4 in various cell types including proliferative chondrocytes,
hypertrophic chondrocytes, osteoblasts/mesenchymal cells in developing bone and
fibroblastic cells in the callus capsule using the scale shown in Supplemental Table 1.
Overall hypertrophic chondrocytes had the highest level of CCL4 immunopositive cells
followed by proliferative chondrocytes, osteoblastic/mesenchymal cells in the developing
bone, and lastly, fibroblastic cells in the capsule (Figure 2). There was no difference
between diabetic and normoglycemic mice in the percent positive CCL4 osteoblasts/
mesenchymal cells or fibroblastic cells and the specific inhibition of TNF had no effect
(P>0.05).

In vitro studies were carried out to investigate a potential mechanism by which TNF may
stimulate chemokines in ATDC5 chondrocytes. CCL4 was examined because of results
obtained in Fig 1 and CCL3 was examined because of its role in promoting
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osteoclastogenesis [22]. Cells were transfected with FOXO1 siRNA or scrambled siRNA
and stimulated with TNF-α (20ng/ml). TNF induced a 4 fold increase in CCL3 and CCL4
mRNA levels. FOXO1 siRNA had little effect on CCL3 basal mRNA levels but did block
almost all of the increase stimulated by TNF-α (P<0.05) (Fig 3). Under basal conditions
FOXO1 knockdown reduced CCL4 mRNA and protein levels by approximately 50%.
FOXO1 siRNA blocked almost all of the increase in CCL4 mRNA stimulated by TNF-α.
TNF-α induced a 2 fold increase of CCLR at the protein level, which was blocked by
FOXO1 knockdown (P<0.05; Figure 3C). In contrast scrambled siRNA had no effect on
CCL3 or CL4 expression (P>0.05).

Additional experiments were carried out examining ATDC5 chondrocytes transfected with
the full length human FOXO1 or FOXO1AAA that has been mutated so that it is
constitutively active [23]. Transfection with constitutively active FOXO1AAA induced ～3
fold increase in CCL3 mRNA and FOXO1 and FOXO1AAA induced a 3 fold increase in
CCL4 mRNA levels. When released CCL4 was measured at the protein level FOXO1
induced a 50% increase and FOXO1AAA a 100% increase. Transfection with vector
containing green fluorescent protein had no effect.

To further explore the role of TNF-α in chemokine induction in ATDC5 chondrocytes, in
vitro experiments were performed using a focused PCR array (Table 2). TNF-α significantly
enhanced mRNA levels of 14 out of 25 chemokines in the array (56%) with the degree of
upregulation ranging from 6 to greater than 1000 fold (P<0.05) (Table 2). In every case,
FOXO1 knockdown significantly (P<0.05) blunted the increase stimulated TNF-α (Table 2).
In addition 19 chemokine receptors were examined for increased expression by TNF-α and
regulation by FOXO1. Two of these were significantly increased by TNF and two others just
missed being significant. mRNA levels for CCR1, CCRL2 and CCR4 were significantly
reduced by FOXO1. Other inflammatory genes and morphogenetic proteins genes included
in the array were also upregulated by TNF stimulation by at least 6 fold (Table 2B; P≤0.05).
In each case the TNF mediated increase was reduced by FOXO1 knockdown. These results
point to the overall importance of TNF in induction of inflammatory molecules including
chemotactic cytokines and their receptors in chondrocytes and the possible role of FOXO1
in mediating the effect of TNF stimulation.

Discussion
Diabetes has a significant impact on fracture healing and increases the inflammatory
environment at the fracture site [14, 24, 25]. By mRNA profiling we show here a potentially
unrecognized mechanism for diabetes impaired fracture healing; enhanced expression of
chemokines during the transition from cartilage to bone in the healing fracture callus.
Diabetic fracture sites had significant upregulation of several chemokines and receptors,
CCL4, CCL8, CCL6, CCL11, CCL20, CCL24, CXCL2, CXCL5 and chemokine receptors
CCR5 and CXCR4. In vitro TNF-α stimulated mRNA levels of several chemokines in
chondrocytes that were also enhanced by diabetes in vivo including CCL4, CCL8, CCL20,
CXCL2 and CXCL5. Each of these is chemotactic for leukocyte subsets including
lymphocytes, monocytes and PMNs and to be produced by chondrocytes [26-28]. The
induction of chemokines by TNF-α is consistent with previous findings that the
hyperinflammatory response in diabetic fracture healing is caused in part, by the elevated
levels of TNF-α [15,16]. Moreover, CCL4 was shown by immunohistochemistry to be
induced in hypertrophic chondrocytes in diabetic fracture sites by a TNF-dependent
mechanism. Two chemokines upregulated by diabetes in vivo CCL6 and CCL11 were not
regulated by TNF in vitro, suggesting that they may be regulated by other factors present in
diabetic calluses or primarily expressed in cells other than chondrocytes. Compared to
chemokine ligands there was less overlap between chemokine receptors elevated in diabetic
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fracture calluses and regulation of chemokine receptors by TNF in vitro. This may reflect
the relatively few chemokine receptors that were included in the in vivo microarray or
expression by cells other than chondrocytes. However, expression of CCR1 and CCR4 have
been found in chondrocytes [29, 30] and were regulated by TNF in a FOXO1 dependent
manner.

In summary, we report here that diabetic fracture calluses are characterized by enhanced
chemokine expression and at least in some cases, chondrocytes are likely to be an important
source as shown for CCL4. The expression of chemokines could contribute to the
accelerated loss of cartilage noted in diabetic fracture calluses [14, 17] by enhancing the
level of inflammation through recruitment of leukocyte subsets or through the recruitment of
osteoclast precursors and osteoclast formation [26]. The potential importance of
inflammatory mediators is underscored by the rapid loss of cartilage under conditions where
inflammation is enhanced such as diabetes [14, 31]. Conversely, when inflammation is
suppressed by genetic deletion of TNF receptors, degradation of cartilage is delayed [32].
This may be significant since cartilage forms the anlagen for endochondral bone formation.
In addition, chemokines have other potential effects such as the production of degradative
enzymes and autocrine stimulation of osteoclasts that may enhance apoptosis [26, 33]. Thus,
it is possible that dysregation in diabetes leads to elevated production of cytokines such as
TNF-α, which in turn induces the expression of chemokines that amplify the level of
inflammation and catabolic effect of diabetes on diabetic fracture healing.

Chemokines and their receptors have been found to participate in diseases involving bone
and cartilage degradation such as osteoarthritis and rheumatoid arthritis and osteolytic
lesions from various pathologies [4, 34, 35]. Thus, it is possible that chemokine production
by chondrocytes has an autocrine or paracrine role in including an effect on inflammation,
apoptosis, production of degradative enzymes and formation of osteoclasts [36].
Experiments with chemokine inhibition at the time of cartilage degradation would be needed
to definitively establish the role of chemokines in the transition from cartilage to bone
during fracture healing.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Diabetes enhances chemokine expression in Fracture Healing

• Hypertrophic chondrocytes express chemokines during fracture healing in a
TNF dependent manner

• TNF induced chemokine expression in chondrocytes is mediated by
transcription factor FOXO1
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Figure 1. Chondrocytes express enhanced CCL4 expression in diabetic fractures that is TNF
dependent
Femoral fractures were induced in normoglycemic (N) or diabetic (D) mice which were
treated with the TNF-specific inhibitor, pegsunercept (PEG) or PBS alone (PBS) starting on
day 10. Transverse sections were examined by immunohistochemistry for expression of
CCL4. Figure 1A: The percent hypertrophic chondrocytes that expressed CCL4. Figure 1B:
The percent proliferative chondrocytes that expressed CCL4.* indicate significant
differences between normal and diabetic groups (P<0.05). ** Indicates differences between
diabetic and PEG treated groups (P<0.05).
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Figure 2. CCL4 expression occurs preferentially in hypertrophic chondrocytes
Sections from fracture calluses were examined by immunohistochemistry for CCL4
expression. The relative percent CCL4 positive cells was assessed from a scale of 0 to 5 as
described in Supplemental Table 1. A, Osteoblasts and mesenchymal cells; B, Fibroblasts;
C, Proliferative chondrocytes; and D, Hypertrophic chondrocytes. Significance was
determined by Kruskal–Wallis one-way analysis of variance. * Indicates significant
difference between normal and diabetic groups (p<0.05). ** Indicates significant differences
between 16-day diabetic and diabetic pegsunercept treated groups (p<0.05).
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Figure 3. TNF induced CCL4 is FOXO1 dependent in chondrocytes
ATDC5 chondrocytes were transfected with FOXO1 siRNA or scrambled siRNA and
stimulated with TNF-α (20ng/ml). mRNA levels of CCL3 or CCL4 were measured by real-
time PCR and the protein level of CCL4 was measured by ELISA. mRNA levels are
expressed relative to baseline. Data are representative of three independent experiments. +
indicates significantly higher than baseline control (P<0.05); *indicates a significantly less
than matched scrambled siRNA (P<0.05).
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Figure 4. FOXO1 over-expression induces CCL3 and CCL4 in chondrocytes
ATDC5 cells were transfected with constructs containing GFP (negative control), FOXO1
or constitutively active FOXO1AAA. Cell lysates were examined for mRNA levels of CCL3
or CCL4 by real-time PCR and the protein level of CCL4 was measured by ELISA. Data are
representative of two or three independent experiments. * indicates significantly higher than
GFP negative control (P<0.05).
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Table 2 A
Chemokines and Receptors Gene Expression from PCR Focused Microarray in ATDC5
cells with hypertrophic chondrocytes

TNF-α Treatment FOXO1 knockdown

Chemokine Fold Change P value Fold Change P value

Ccl1 6.13 0.04 0.19 0.05

Ccl2 >1000 0.02 0.05 0

Ccl4 29.6 0.05 0.03 0

Ccl5 >1000 0.04 0.02 0

Ccl6 0.94 0.99 0.06 0.02

Ccl7 95.4 0 0.04 0

Ccl8 12.44 0 0.29 0

Ccl9 212.2 0 0.04 0

Ccl11 5.86 0.3 0.24 0.2

Ccl12 0.15 0.49 2.5 0.4

Ccl17 59.28 0 0.07 0

Ccl19 0.37 0.78 0.25 0.43

Ccl20 >1000 0 0.03 0

Cxcl1 12.55 0.02 0.3 0

Cxcl2 48.74 0 0.11 0

Cxcl5 11.34 0 0.17 0

Cxcl9 >1000 0 0 0

Cxcl10 >1000 0 <0.001 0

Cxcl11 82.1 0.32 <0.001 0

Cxcl12 2.78 0.57 2.36 0

Cxcl13 88.1 0.1 1.14 0.86

Cxcl15 3.31 0.56 0.13 0.06

Cx3cl1 724.28 0.08 0.07 0

Xcl1 124.3 0.58 0.02 0.61

Chemokine Receptor Fold Change P value Fold Change P value

Ccr1 4.46 0.05 0.23 0.05

Ccr2 0.83 0.9 0.99 0.99

Ccr3 2.31 0.54 0.2 0.03

Ccr4 7.43 0.07 0.74 0.04

Ccr5 0.3 0.68 0.4 0.28

Ccr6 40.15 0.09 1.06 0.89

Ccr7 1.69 0.44 0.75 0.39

Ccr8 0.44 0.71 0.47 0.23

Ccr9 1.81 0.43 1.2 0.61

Ccr10 3.86 0.56 11.14 0.19

Ccrl1 0.32 0.4 2.28 0.14

Ccrl2 653.19 0 0.01 0

Ccr1l1 1.35 0.8 0.85 0.89
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TNF-α Treatment FOXO1 knockdown

Chemokine Fold Change P value Fold Change P value

Cxcr3 0.95 0.99 0.7 0.61

Cxcr4 0.52 0 3.33 0

Cxcr5 4.28 0.06 0.81 0.73

Cxcr6 1.35 0.28 1.22 0.07

Cxcr7 0.67 0.87 0.5 0

Cx3cr1 0.2 0.71 0.93 0.96
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Table 2 B
Other Inflammatory Gene Expression from PCR Focused Microarray in ATDC5 cells
with hypertrophic chondrocytes

TNF-α Treatment FOXO1 knockdown

Fold Change P value Fold Change P value

TNFa >1000 0.00 <0.001 0.00

Inhbb >1000 0.25 <0.001 0.32

Csf1 102.28 0.15 0.16 0.00

Nfkb1 49.74 0.19 0.31 0.00

Cmtm4 45.88 0.24 0.78 0.03

Bmp10 37.51 0.02 0.03 0.01

Hif1a 24.80 0.35 0.95 0.70

Il1a 23.53 0.00 0.18 0.00

Lif 17.85 0.42 0.67 0.89

Tnfrsf1a 14.70 0.31 0.98 0.79

Tlr4 14.10 0.26 1.07 0.82

Ppbp 13.78 0.30 0.70 0.00

Il18 11.77 0.13 0.77 0.00

Tnfsf14 7.88 0.18 0.16 0.23

Cmtm6 6.02 0.03 0.59 0.00

Bdnf 5.66 0.18 0.64 0.04

Csf2 5.09 0.62 0.29 0.00

Mmp2 3.46 0.12 1.10 0.47

Il13 3.39 0.37 1.49 0.62

Rgs3 2.81 0.10 0.56 0.46

Il4 2.77 0.32 1.46 0.44

Bmp6 1.83 0.36 0.75 0.12

Myd88 1.51 0.78 0.32 0.00

Il8ra 1.47 0.29 2.09 0.19

Inha 1.27 0.77 3.36 0.00

Tymp 1.21 0.16 1.94 0.01

Cmtm3 1.09 0.90 0.96 0.66

Cmklr1 0.88 0.91 1.59 0.04

Il8rb 0.50 0.83 0.15 0.09

Trem1 0.39 0.41 1.48 0.63

Agtrl1 0.22 0.68 0.35 0.43

Bmp15 0.18 0.31 4.48 0.08

Ccbp2 0.18 0.09 3.74 0.17

Pf4 0.16 0.63 0.52 0.13

Gdf5 0.11 0.23 8.19 0.08

Cmtm5 0.05 0.45 1.48 0.63

Gpr81 0.05 0.53 0.54 0.47

Il16 0.05 0.41 0.56 0.64
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TNF-α Treatment FOXO1 knockdown

Fold Change P value Fold Change P value

Slit2 0.05 0.41 0.82 0.47

Ltb4r2 0.03 0.32 2.38 0.03

Cmtm2a 0.02 0.24 0.64 0.64

ATDC5 cells were transfected with FOXO1siRNA or scrambled siRNA and stimulated with TNF-α as for 6 hour. The TNF-α treatment columns
give the mRNA values for cells incubated with TNF-α plus scrambled siRNA divided by the value for scrambled siRNA and the p values
calculated for these two groups. FOXO1 knockdown columns give the mRNA values for cells incubated with TNF-α plus FOXO1 siRNA divided
by the value for TNF-α plus scrambled siRNA and the p values calculated for these two groups. Bolded results represent changes where there was
at least 1.7 fold increase or 0.7 fold decrease and were statistically significant (P≤0.05).
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