756 research outputs found

    Shock induced vaporization of anhydrite CaSO4 and calcite CaCO3

    Get PDF
    Discovery of abundant anhydrite (CaSO4) and gypsum (CaSO4.2H2O) in the otherwise carbonate sediments comprising the upper portion of the rocks contained within the Chicxulub impact crater has prompted research on the shock-induced vaporization of these minerals. We use a vaporization criterion determined by shock-induced entropy. We reanalyze the shock wave experiments of Yang [1]. He shocked 30% porous anhydrite and 46% porous calcite. Post-shock adiabatic expansion of the sample across a 5 mm-thick gap and then impact upon an aluminum witness plate backed by LiF window that is monitored with a VISAR. Reanalysis uses Herrman's P-alpha model [2] for porous materials, and a realistic interpolation gas equation-of-state for vaporization products. Derived values of the entropies for incipient and complete vaporization for anhydrite are 1.65±0.12 and 3.17±0.12 kJ(kg.K)–1, and for calcite these are 0.99±0.11 and 1.93±0.11 kJ(kg.K)–1. Corresponding pressures for incipient and complete vaporization along the Hugoniot of non-porous anhydrite are 32.5±2.5 and 122±13 GPa and for non-porous calcite are 17.8±2.9 and 54.1±5.3 GPa, respectively. These pressures are a factor of 2–3 lower than reported earlier by Yang

    Shock temperatures in calcite (CaCO3): Implication for shock induced decomposition

    Get PDF
    The temperatures induced in crystalline calcite upon planar shock compression (95–160 GPa) are reported from two-stage light gas-gun experiments. The temperatures are obtained fitting 6-channel optical pyrometer radiances in the 450 to 900 nm range, to a Planck radiation law temperature varied from 3300 to 5400 K. Calculations demonstrate that the temperatures are some 400 to 1350 K lower than if either shock-induced melting and/or disproportionation of calcite behind the shock front was not occurring. Here calcite is modeled as disproportionating into a molecular liquid, or a solid CaO plus CO2 gas. For temperature calculations, specific heat at constant volume for one mole of CO2 is taken to be 6.7R as compared to 9R in the solid state; whereas calcite and CaO have their solid state values (15R and 6R). Calculations also suggest that the onset of decomposition in calcite to CaO and CO2 during loading occurs at ~75±10 GPa, along the Hugoniot whereas decomposition begins upon unloading from 18 GPa. The 18 GPa value is based on comparison of VISAR measurements of particle velocity profiles induced upon isentropic expansion with one-dimensional numerical simulation

    Reconstruction of destruction – in vitro reconstitution methods in autophagy research

    Get PDF
    International audienceAutophagy is one of the most elaborative membrane remodeling systems in eukaryotic cells. Its major function is to recycle cytoplasmic material by delivering it to lysosomes for degradation. To achieve this, a membrane cisterna is formed that gradually captures cargo such as organelles or protein aggregates. The diversity of cargo requires autophagy to be highly versatile to adapt the shape of the phagophore to its substrate. Upon closure of the phagophore, a double-membrane-surrounded autophagosome is formed that eventually fuses with lysosomes. In response to environmental cues such as cytotoxicity or starvation, bulk cytoplasm can be captured and delivered to lysosomes. Autophagy thus supports cellular survival under adverse conditions. During the past decades, groundbreaking genetic and cell biological studies have identified the core machinery involved in the process. In this Review, we are focusing on in vitro reconstitution approaches to decipher the details and spatiotemporal control of autophagy, and how such studies contributed to our current understanding of the pathways in yeast and mammals. We highlight studies that revealed the function of the autophagy machinery at a molecular level with respect to its capacity to remodel membranes

    Mass spectrometer calibration of Cosmic Dust Analyzer

    Get PDF
    The time-of-flight (TOF) mass spectrometer (MS) of the Cosmic Dust Analyzer (CDA) instrument aboard the Cassini spacecraft is expected to be placed in orbit about Saturn to sample submicrometer-diameter ring particles and impact ejecta from Saturn's satellites. The CDA measures a mass spectrum of each particle that impacts the chemical analyzer sector of the instrument. Particles impact a Rh target plate at velocities of 1-100 km/s and produce some 10^(−8) to 10^(−5) times the particle mass of positive valence, single-charged ions. These are analyzed via a TOF MS. Initial tests employed a pulsed N2 laser acting on samples of kamacite, pyrrhotite, serpentine, olivine, and Murchison meteorite induced bursts of ions which were detected with a microchannel plate and a charge sensitive amplifier (CSA). Pulses from the N_2 laser (10^(11) W/cm^2) are assumed to simulate particle impact. Using aluminum alloy as a test sample, each pulse produces a charge of ∼4.6 pC (mostly Al^(+1)), whereas irradiation of a stainless steel target produces a ∼2.8 pC (Fe^(+1)) charge. Thus the present system yields ∼10^(−5)% of the laser energy in resulting ions. A CSA signal indicates that at the position of the microchannel plate, the ion detector geometry is such that some 5% of the laser-induced ions are collected in the CDA geometry. Employing a multichannel plate detector in this MS yields for Al-Mg-Cu alloy and kamacite targets well-defined peaks at 24 (Mg^(+1)), 27(Al^(+1)), and 64 (Cu^(+1)) and 56 (Fe^(+1)), 58 (Ni^(+1)), and 60 (Ni^(+1)) dalton, respectively

    STUDY ON KAP OF OCULAR COMPLICATIONS DUE TO DIABETES AMONG TYPE II DIABETICS VISITING A TERTIARY TEACHING HOSPITAL

    Get PDF
    Introduction: Diabetes mellitus is a major public health problem worldwide. Diabetic patients are at risk of developing blindness from diabetic retinopathy. While occurrence of diabetic retinopathy cannot be prevented, its complications can be minimized. This requires awareness of the sight-threatening potential of diabetes and the need for regular eye examinations. Aim: To study the knowledge of ocular complications of diabetes, among type II diabetics visiting a tertiary level hospital. Settings and Design: This was a prospective study in a tertiary care teaching hospital. Methods and Material: This was a questionnaire based study on 350 type II diabetics. All patients were interviewed by the same investigator. Statistical analysis used: The data was analysed using chi square test. Results: With increase in the duration of illness, the awareness about diabetic retinopathy is more. Even though the awareness of the disease increased with increasing duration of the disease, 51.4% of the diabetics did not know how diabetes can affect the eye, 49.7% of diabetics did not know if diabetic retinopathy can be treated and 67.4% had not heard of any treatment modality for diabetic retinopathy. This shows that lack of knowledge about the disease was significant. Conclusions: Prevention of non-communicable disease through increased awareness needs to be the thrust of the effort in resource poor contexts, where the treatment can be prohibitively costly. These measures would help to bring about more awareness and understanding about the disease among the patients and therefore prevent sight-threatening complications by timely intervention and management

    Aromatic, microporous polymer networks with high surface area generated in Friedel-Crafts-type polycondensations

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.A series of novel, microporous polymer networks (MPNs) have been generated in a simple, acid catalysed Friedel–Crafts-type self-condensation of A2B2- and A2B4-type fluorenone monomers. Two A2B4-type monomers with 2,7-bis(N,N-diphenylamino) A or 2,7-bis[4-(N,N-diphenylamino)phenyl] D substitution of the fluorenone cores lead to MPNs with high SBET surface areas of up to 1400 m2 g−1. Two MPNs made of binary monomer mixtures showed the highest Brunauer–Emmett–Teller (BET) surface areas SBET of our series (SBET of up to 1800 m2 g−1) after washing the powdery samples with supercritical carbon dioxide. Total pore volumes of up to 1.6 cm3 g−1 have been detected. It is observed that the substitution pattern of the monomers is strongly influencing the resulting physicochemical properties of the microporous polymer networks (MPNs)

    A single gene (yes) controls pigmentation of eyes and scales in Heliothis virescens

    Get PDF
    A yellow-eyed mutant was discovered in a strain of Heliothis virescens, the tobacco budworm, that already exhibited a mutation for yellow scale, y. We investigated the inheritance of these visible mutations as candidate markers for transgenesis. Yellow eye was controlled by a single, recessive, autosomal factor, the same type of inheritance previously known for y. Presence of the recombinant mutants with yellow scales and wild type eyes in test crosses indicated independent segregation of genes for these traits. The recombinant class with wild type scales and yellow eyes was completely absent and there was a corresponding increase of the double mutant parental class having yellow scales and yellow eyes. These results indicated that a single factor for yellow eye also controlled yellow scales independently of y. This gene was named yes, for yellow eye and scale. We hypothesize that yes controls both eye and scale color through a deficiency in transport of pigment precursors in both the ommochrome and melanin pathways. The unlinked gene y likely controls an enzyme affecting the melanin pathway only. Both y and yes segregated independently of AceIn, acetylcholinesterase insensitivity, and sodium channel hscp, which are genes related to insecticide resistance

    Simple high-cell density fed-batch technique for high-level recombinant protein production with Pichia pastoris: Application to intracellular production of Hepatitis B surface antigen

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatitis B is a serious global public health concern. Though a safe and efficacious recombinant vaccine is available, its use in several resource-poor countries is limited by cost. We have investigated the production of Hepatitis B virus surface antigen (HBsAg) using the yeast <it>Pichia pastoris </it>GS115 by inserting the <it>HBsAg </it>gene into the alcohol oxidase 1 locus.</p> <p>Results</p> <p>Large-scale production was optimized by developing a simple fed-batch process leading to enhanced product titers. Cells were first grown rapidly to high-cell density in a batch process using a simple defined medium with low salt and high glycerol concentrations. Induction of recombinant product synthesis was carried out using rather drastic conditions, namely through the addition of methanol to a final concentration of 6 g L<sup>-1</sup>. This methanol concentration was kept constant for the remainder of the cultivation through continuous methanol feeding based on the <it>on-line </it>signal of a flame ionization detector employed as methanol analyzer in the off-gas stream. Using this robust feeding protocol, maximum concentrations of ~7 grams HBsAg per liter culture broth were obtained. The amount of soluble HBsAg, competent for assembly into characteristic virus-like particles (VLPs), an attribute critical to its immunogenicity and efficacy as a hepatitis B vaccine, reached 2.3 grams per liter of culture broth.</p> <p>Conclusion</p> <p>In comparison to the highest yields reported so far, our simple cultivation process resulted in an ~7 fold enhancement in total HBsAg production with more than 30% of soluble protein competent for assembly into VLPs. This work opens up the possibility of significantly reducing the cost of vaccine production with implications for expanding hepatitis B vaccination in resource-poor countries.</p
    corecore