111,419 research outputs found

    Combining Semi-Analytic Models of Galaxy Formation with Simulations of Galaxy Clusters: the Need for AGN Heating

    Get PDF
    We present hydrodynamical N-body simulations of clusters of galaxies with feedback taken from semi-analytic models of galaxy formation. The advantage of this technique is that the source of feedback in our simulations is a population of galaxies that closely resembles that found in the real universe. We demonstrate that, to achieve the high entropy levels found in clusters, active galactic nuclei must inject a large fraction of their energy into the intergalactic/intracluster media throughout the growth period of the central black hole. These simulations reinforce the argument of Bower et al. (2008), who arrived at the same conclusion on the basis of purely semi-analytic reasoning.Comment: 4 pages, 1 figure. To appear in the proceedings of "The Monster's Fiery Breath", Eds. Sebastian Heinz and Eric Wilcots (AIP conference series

    Polytropic spheres in Palatini f(R) gravity

    Full text link
    We examine static spherically symmetric polytropic spheres in Palatini f(R) gravity and show that no regular solutions to the field equations exist for physically relevant cases such as a monatomic isentropic gas or a degenerate electron gas, thus casting doubt on the validity of Palatini f(R) gravity as an alternative to General Relativity.Comment: Talk given by EB at the 30th Spanish Relativity Meeting, 10 - 14 September 2007, Tenerife (Spain). Based on arXiv:gr-qc/0703132 and arXiv:0712.1141 [gr-qc

    A sketch planning methodology for determining interventions for bicycle and pedestrian crashes: an ecological approach

    Get PDF
    Bicycle and pedestrian safety planning have recently been gaining increased attention. With this focus, however, comes increased responsibilities for planning agencies and organizations tasked with evaluating and selecting safety interventions, a potentially arduous task given limited staff and resources. This study presents a sketch planning framework based on ecological factors that attempts to provide an efficient and effective method of selecting appropriate intervention measures. A Chicago case study is used to demonstrate how such a method may be applied

    A nonlinear Schr\"odinger equation for water waves on finite depth with constant vorticity

    Full text link
    A nonlinear Schr\"odinger equation for the envelope of two dimensional surface water waves on finite depth with non zero constant vorticity is derived, and the influence of this constant vorticity on the well known stability properties of weakly nonlinear wave packets is studied. It is demonstrated that vorticity modifies significantly the modulational instability properties of weakly nonlinear plane waves, namely the growth rate and bandwidth. At third order we have shown the importance of the coupling between the mean flow induced by the modulation and the vorticity. Furthermore, it is shown that these plane wave solutions may be linearly stable to modulational instability for an opposite shear current independently of the dimensionless parameter kh, where k and h are the carrier wavenumber and depth respectively

    Fast generation of stability charts for time-delay systems using continuation of characteristic roots

    Full text link
    Many dynamic processes involve time delays, thus their dynamics are governed by delay differential equations (DDEs). Studying the stability of dynamic systems is critical, but analyzing the stability of time-delay systems is challenging because DDEs are infinite-dimensional. We propose a new approach to quickly generate stability charts for DDEs using continuation of characteristic roots (CCR). In our CCR method, the roots of the characteristic equation of a DDE are written as implicit functions of the parameters of interest, and the continuation equations are derived in the form of ordinary differential equations (ODEs). Numerical continuation is then employed to determine the characteristic roots at all points in a parametric space; the stability of the original DDE can then be easily determined. A key advantage of the proposed method is that a system of linearly independent ODEs is solved rather than the typical strategy of solving a large eigenvalue problem at each grid point in the domain. Thus, the CCR method significantly reduces the computational effort required to determine the stability of DDEs. As we demonstrate with several examples, the CCR method generates highly accurate stability charts, and does so up to 10 times faster than the Galerkin approximation method.Comment: 12 pages, 6 figure

    IRAs and Household Saving Revisited: Some New Evidence

    Get PDF
    The effectiveness of tax-favored savings accounts in raising national savings depends crucially upon the willingness of households to reduce consumption in order to finance contributions to these accounts. The debate over the tax deductibility of IRA's has centered on whether IRA contributions represented new savings or reshuffled assets. We devise a test to distinguish between these two hypotheses where we compare the behavior of households which just opened an IRA account with that of households which already had an IRA account. Our test accounts for any unobservable heterogeneity across the two groups. We find evidence that supports the view that households financed their IRA contributions primarily through reductions in their stocks of other assets. Our results indicate that less than 20% of IRA contributions represented addition to national savings.
    corecore