23 research outputs found

    The genetic mating system of a sea spider with male-biased sexual size dimorphism: evidence for paternity skew despite random mating success

    Get PDF
    Male-biased size dimorphism is usually expected to evolve in taxa with intense male–male competition for mates, and it is hence associated with high variances in male mating success. Most species of pycnogonid sea spiders exhibit female-biased size dimorphism, and are notable among arthropods for having exclusive male parental care of embryos. Relatively little, however, is known about their natural history, breeding ecology, and mating systems. Here we first show that Ammothella biunguiculata, a small intertidal sea spider, exhibits male-biased size dimorphism. Moreover, we combine genetic parentage analysis with quantitative measures of sexual selection to show that male body size does not appear to be under directional selection. Simulations of random mating revealed that mate acquisition in this species is largely driven by chance factors, although actual paternity success is likely non-randomly distributed. Finally, the opportunity for sexual selection (Is), an indirect metric for the potential strength of sexual selection, in A. biunguiculata males was less than half of that estimated in a sea spider with female-biased size dimorphism, suggesting the direction of size dimorphism may not be a reliable predictor of the intensity of sexual selection in this group. We highlight the suitability of pycnogonids as model systems for addressing questions relating parental investment and sexual selection, as well as the current lack of basic information on their natural history and breeding ecology

    Renin-Angiotensin System Blockade Improves Cardiac Indices in Acromegaly Patients

    Get PDF
    This work forms part of the research themes contributing to the translational research portfolio of Barts Cardiovascular Biomedical Research Unit, which is supported and funded by the National Institute for Health Research. The study was supported by unrestricted research grants from Pfizer and Novarti

    Pheochromocytoma is characterized by catecholamine-mediated myocarditis, focal and diffuse myocardial fibrosis, and myocardial dysfunction

    No full text
    © 2016 American College of Cardiology Foundation.Background Pheochromocytoma is associated with catecholamine-induced cardiac toxicity, but the extent and nature of cardiac involvement in clinical cohorts is not well-characterized. Objectives This study characterized the cardiac phenotype in patients with pheochromocytoma using cardiac magnetic resonance (CMR). Methods A total of 125 subjects were studied, including patients with newly diagnosed pheochromocytoma (n = 29), patients with previously surgically cured pheochromocytoma (n = 31), healthy control subjects (n = 51), and hypertensive control subjects (HTN) (n = 14), using CMR (1.5-T) cine, strain imaging by myocardial tagging, late gadolinium enhancement, and native T1 mapping (Shortened Modified Look-Locker Inversion recovery [ShMOLLI]). Results Patients who were newly diagnosed with pheochromocytoma, compared with healthy and HTN control subjects, had impaired left ventricular (LV) ejection fraction (<56% in 38% of patients), peak systolic circumferential strain (p < 0.05), and diastolic strain rate (p < 0.05). They had higher myocardial T1 (974 ± 25 ms, as compared with 954 ± 16 ms in healthy and 958 ± 23 ms in HTN subjects; p < 0.05), areas of myocarditis (median 22% LV with T1 >990 ms, as compared with 1% in healthy and 2% in HTN subjects; p < 0.05), and focal fibrosis (59% had nonischemic late gadolinium enhancement, as compared with 14% in HTN subjects). Post-operatively, impaired LV ejection fraction typically normalized, but systolic and diastolic strain impairment persisted. Focal fibrosis (median 5% LV) and T1 abnormalities (median 12% LV) remained, the latter of which may suggest some diffuse fibrosis. Previously cured patients demonstrated abnormal diastolic strain rate (p < 0.001), myocardial T1 (median 12% LV), and small areas of focal fibrosis (median 1% LV). LV mass index was increased in HTN compared with healthy control subjects (p < 0.05), but not in the 2 pheochromocytoma groups. Conclusions This first systematic CMR study characterizing the cardiac phenotype in pheochromocytoma showed that cardiac involvement was frequent and, for some variables, persisted after curative surgery. These effects surpass those of hypertensive heart disease alone, supporting a direct role of catecholamine toxicity that may produce subtle but long-lasting myocardial alterations
    corecore