139 research outputs found
Exchange constants in molecule-based magnets derived from density functional methods
Cu(pyz)(NO3)2 is a quasi-one-dimensional molecular antiferromagnet that exhibits three-dimensional long-range magnetic order below T N = 110 mK due to the presence of weak interchain exchange couplings. Here, we compare calculations of the three largest exchange coupling constants in this system using two techniques based on plane-wave basis-set density functional theory: (i) a dimer fragment approach and (ii) an approach using periodic boundary conditions. The calculated values of the large intrachain coupling constant are found to be consistent with experiment, showing the expected level of variation between different techniques and implementations. However, the interchain coupling constants are found to be smaller than the current limits on the resolution of the calculations. This is due to the computational limitations on convergence of absolute energy differences with respect to basis set, which are larger than the interchain couplings themselves. Our results imply that errors resulting from such limitations are inherent in the evaluation of small exchange constants in systems of this sort, and that many previously reported results should therefore be treated with caution
Shubnikovâde Haas effect in multiband quasi-two-dimensional metals
We analyze the behavior of the longitudinal conductivity zz in a field perpendicular to the highly conducting
plane of a quasi-two-dimensional multiband metal in the case of a closed system where chemical potential
oscillations may be observed compared with the case of an open system for various forms of scattering. In all
but one case, we find that there are mixing frequencies present. However, they exhibit different qualitative
behaviors, as befits their different origins, and in the case of interband scattering in an open system, may in fact
be absent in the de Haasâvan Alphen oscillations of that system
Transverse field muon-spin rotation signature of the skyrmion-lattice phase in Cu2OSeO3
We present the results of transverse field (TF) muon-spin rotation (ÎŒ+SR) measurements on Cu2OSeO3, which has a skyrmion-lattice (SL) phase. We measure the response of the TF ÎŒ+SR signal in that phase along with the surrounding ones, and suggest how the phases might be distinguished using the results of these measurements. Dipole field simulations support the conclusion that the muon is sensitive to the SL via the TF line shape and, based on this interpretation, our measurements suggest that the SL is quasistatic on a time scale Ï > 100 ns
Modeling on fluid flow and inclusion motion in centrifugal continuous casting strands
During the centrifugal continuous casting process, unreasonable casting parameters can cause violent level fluctuation, serious gas entrainment, and formation of frozen shell pieces at the meniscus. Thus, in the current study, a three-dimensional multiphase turbulent model was established to study the transport phenomena during centrifugal continuous casting process. The effects of nozzle position, casting and rotational speed on the flow pattern, centrifugal force acting on the molten steel, level fluctuation, gas entrainment, shear stress on mold wall, and motion of inclusions during centrifugal continuous casting process were investigated. Volume of Fluid model was used to simulate the molten steel-air two-phase. The level fluctuation and the gas entrainment during casting were calculated by user-developed subroutines. The trajectory of inclusions in the rotating system was calculated using the Lagrangian approach. The results show that during centrifugal continuous casting, a large amount of gas was entrained into the molten steel, and broken into bubbles of various sizes. The greater the distance to the mold wall, the smaller the centrifugal force. Rotation speed had the most important influence on the centrifugal force distribution at the side region. Angular moving angle of the nozzle with 8° and keeping the rotation speed with 60 revolutions per minute can somehow stabilize the level fluctuation. The increase of angular angle of nozzle from 8 to 18 deg and rotation speed from 40 to 80 revolutions per minute favored to decrease the total volume of entrained bubbles, while the increase of distance of nozzle moving left and casting speed had reverse effects. The trajectories of inclusions in the mold were irregular, and then rotated along the strand length. After penetrating a certain distance, the inclusions gradually moved to the center of billet and gathered there. More work, such as the heat transfer, the solidification, and the inclusions entrapment during centrifugal continuous casting, will be performed
An official American thoracic society workshop report: Translational research in rare respiratory diseases
Rare respiratory diseases (RRDs) are a heterogeneous group of disorders that collectively represent a significant health care burden. In recent years, strong advocacy and policy initiatives have led to advances in the implementation of research and clinical care for rare diseases. The development of specialized centers and research networks has facilitated support for affected individuals as well as emerging programs in basic, translational, and clinical research. In selected RRDs, subsequent gains in knowledge have informed the development of targeted therapies and effective diagnostic tests, but many gaps persist. There was therefore a desire to identify the elements contributing to an effective translational research program in RRDs. To this end, a workshop was convened in October 2015 with a focus on the implementation of effective transnational research networks and collaborations aimed at developing novel diagnostic and therapeutic tools. Key elements included an emphasis on molecular pathogenesis, the continuing engagement of patient advocacy groups and policy makers, the effective use of preclinical models in the translational research pipeline, and the detailed phenotyping of patient cohorts. During the course of the workshop, current logistical and knowledge gapswere identified, and new solutions or opportunities were highlighted
Heritability estimates for 361 blood metabolites across 40 genome-wide association studies
Metabolomics examines the small molecules involved in cellular metabolism. Approximately 50% of total phenotypic differences in metabolite levels is due to genetic variance, but heritability estimates differ across metabolite classes. We perform a review of all genome-wide association and (exome-) sequencing studies published between November 2008 and October 2018, and identify >800 class-specific metabolite loci associated with metabolite levels. In a twin-family cohort (N = 5117), these metabolite loci are leveraged to simultaneously estimate total heritability (h2 total), and the proportion of heritability captured by known metabolite loci (h2 Metabolite-hits) for 309 lipids and
Novel genetic loci associated with hippocampal volume
The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness
Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk
BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7Ă10-8, HR = 1.14, 95% CI: 1.09-1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4Ă10-8, HR = 1.27, 95% CI: 1.17-1.38) and 4q32.3 (rs4691139, P = 3.4Ă10-8, HR = 1.20, 95% CI: 1.17-1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific associat
- âŠ