4,586 research outputs found

    Playing Games in the Baire Space

    Full text link
    We solve a generalized version of Church's Synthesis Problem where a play is given by a sequence of natural numbers rather than a sequence of bits; so a play is an element of the Baire space rather than of the Cantor space. Two players Input and Output choose natural numbers in alternation to generate a play. We present a natural model of automata ("N-memory automata") equipped with the parity acceptance condition, and we introduce also the corresponding model of "N-memory transducers". We show that solvability of games specified by N-memory automata (i.e., existence of a winning strategy for player Output) is decidable, and that in this case an N-memory transducer can be constructed that implements a winning strategy for player Output.Comment: In Proceedings Cassting'16/SynCoP'16, arXiv:1608.0017

    Sensitivity to interaural time differences in the medial superior olive of a small mammal, the Mexican free-tailed bat

    Get PDF
    Neurons in the medial superior olive (MSO) are thought to encode interaural time differences (ITDs), the main binaural cues used for localizing low-frequency sounds in the horizontal plane. The underlying mechanism is supposed to rely on a coincidence of excitatory inputs from the two ears that are phase-locked to either the stimulus frequency or the stimulus envelope. Extracellular recordings from MSO neurons in several mammals conform with this theory. However, there are two aspects that remain puzzling. The first concerns the role of the MSO in small mammals that have relatively poor low-frequency hearing and whose heads generate only very small ITDs. The second puzzling aspect of the scenario concerns the role of the prominent binaural inhibitory inputs to MSO neurons. We examined these two unresolved issues by recording from MSO cells in the Mexican free-tailed bat. Using sinusoidally amplitude-modulated tones, we found that the ITD sensitivities of many MSO cells in the bat were remarkably similar to those reported for larger mammals. Our data also indicate an important role for inhibition in sharpening ITD sensitivity and increasing the dynamic range of ITD functions. A simple model of ITD coding based on the timing of multiple inputs is proposed. Additionally, our data suggest that ITD coding is a by-product of a neuronal circuit that processes the temporal structure of sounds. Because of the free-tailed bat's small head size, ITD coding is most likely not the major function of the MSO in this small mammal and probably other small mammals

    Excitation Waves on a Minimal Small-World Model

    Full text link
    We examine traveling-wave solutions on a regular ring network with one additional long-range link that spans a distance d. The nodes obey the FitzHugh-Nagumo kinetics in the excitable regime. The additional shortcut induces a plethora of spatio-temporal behavior that is not present without it. We describe the underlying mechanisms for different types of patterns: propagation failure, period decreasing, bistability, shortcut blocking and period multiplication. For this purpose, we investigate the dependence on d, the network size, the coupling range in the original ring and the global coupling strength and present a phase diagram summarizing the different scenarios. Furthermore, we discuss the scaling behavior of the critical distance by analytical means and address the connection to spatially continuous excitable media.Comment: 14 pages, 11 figure

    Coupled nuclear and electron dynamics in molecules

    Get PDF
    The interaction of light with a molecular system is the fundamental step of various chemical, physical and biological phenomena. Investigating the nuclear and electron dynamics initiated by light-matter interaction is important to understand, optimize and control the underlying processes. In this thesis two theoretical methods describing the coupled nuclear and electron dynamics in molecular systems are addressed. In the presented studies the coupled dynamics induced by photoexcitation, the subsequent relaxation processes and the possibility to control the dynamics in the vicinity of conical intersections (CoIns) are investigated for different molecular systems. In the first part of this work the photorelaxation pathways of a group of molecules commonly used in organic-based optoelectronic devices are characterized with the help of semiclassical ab intio molecular dynamics simulations. The relaxation pathways starting from the first excited singlet state of thiophene and of small oligothiophenes containing up to three rings is characterized by the interplay of internal conversion (IC) and intersystem crossing (ISC). Especially the ISC is mediated by ring-opening via a carbon-sulfur bond cleavage. The resulting entropically favored open-ring structures trap the molecules in a complex equilibrium between singlet and triplet states and a fast ring closure in the ground state is hindered. The extension of the π-system going from the monomer to the trimer weakens and slows down the ring opening process. Consequently the ISC is reduced for longer thiophene chains. The following two chapters are centered around the topics of controlling the molecular dynamics near a CoIn and monitoring the coherent electron dynamics induced by CoIns and laser interactions in the nucleobase uracil and the symmetric molecule NO2. In order to investigate the coherent electron dynamics, the ansatz used in this work allows a full-quantum description of the electron and nuclear motion and is called nuclear and electron dynamics in molecular systems (NEMol). As part of this work NEMol was extended to capture the coupled dynamics in complex high dimensional molecular systems. The observed electron dynamics both in NO2 and uracil reflects coherence, decoherence and reappearance which are all determined by the associated nuclear dynamics. The control of the molecular dynamics at a CoIn is realized with the help of a few-cycle infrared (IR) pulse. The applied control schema utilizes the carrierenvelope phase (CEP) of the pulse and allows to control the population distribution after the CoIn, the nuclear dynamics as well as the coherent electron dynamics. Depending on the chosen laser parameters and the molecular properties around the CoIn given by nature, two different mechanisms enable the control of the system. Both depend on the CEP but one is based on interference, which is generated by the interaction with the CoIn, and the other one is solely due to the few-cycle waveform of the pulse. As demonstrated for NO2 and uracil, the CEP control scheme even works for quite challenging boundary conditions. Therefore, it seems to be a general concept which can be used also in different molecules

    Balancing the use of behavioral research and design science research to solve the relevance problem in marketing research

    Get PDF
    Contemporary marketing research has a value problem. Claims for the managerial impact of research appear in practically every research article. Nevertheless, managers in the field do not consider scientific outputs as relevant in helping them to address the multiple challenges that organizations face. Marketing typically conducts behavioural research, aiming to understand and explain real-world problems. Other disciplines, such as engineering, focus primarily on building solutions to solve practical problems. Such practice is often termed design science. This study proposes that marketing research should focus more on building solutions, hence calling for a better balance between behavioural and design research. An improved balance between these two paradigms in marketing should increase the value of academic research to practice. Four typical case studies are presented to illustrate key differences between design science and behavioural science

    Hedonic Information Systems: What We Know and What We Don\u27t Know

    Get PDF
    Users spend an increasing amount of time with pleasure-oriented technologies, such as video games or digital entertainment services, and these systems are of growing relevance as a business segment. In the light of this development, the information systems (IS) discipline has been criticized for dedicating insufficient research effort to these types of system, which are referred to as hedonic IS. Therefore, we conducted a descriptive literature review within the top 40 IS journals to summarize past research on hedonic IS and to identify research gaps. To structure our analysis, we separated the studies in our sample between those taking a user and those taking a provider perspective, assigned them to the phases of two life cycle models, and categorized the studies according to the investigated system type. The results reveal that hedonic IS research mostly takes a user perspective, predominantly addresses the (continued) use phase of the user life cycle, and investigates five different system types. Based on our findings, we point out promising opportunities for future research. Thus, our review may help researchers to plan further studies on hedonic IS
    corecore