400 research outputs found

    Report to Ministry of Health

    Get PDF
    Emerging pollutants are thought to be responsible for the most significant share of environmental, human health and economic risk. Although the universe of chemical pollutants is enormous, we only monitor and have studied a minor fraction. The study of the fate of the emerging pollutants and their transformation products in wastewater-treatment plants (WWTP) is of paramount importance, since it can provide valuable information on the human consumption of various drugs. Sewage epidiomiology is the new field that was develloped for the estimation of illicit drug use based on measurements of urinary excreted illicit drugs and their metabolites in untreated wastewater. Within this approach, human metabolic excretion products resulting from drug consumption are rapidly collected and pooled by the sewage systems, providing valuable evidence of the amount and type of drug consumed by a population. The main objective of this research is the contribution to the current knowledge on the actual burden of micropollutants on the environment and on the effect they have on the human health

    ‘The voice is the guide to the experience as well as the experience itself’: An interview with non zero one

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Since 2009, non zero one – a London-based collective of artists with a background and interest in theatre but working across media and performance disciplines – has devised a series of unexpected, challenging but also light-hearted and inviting experiences of immersion. Whilst embracing a variety of techniques and contemporary media, one of the key features of the company’s work is the exploration of audience interaction through the use of headphones, typically in promenade and/or site-specific performance contexts. Following a first section that questions the role of voice in (theatrical) sonic immersion, the text unfolds as a dialogue between practitioner-scholar Konstantinos Thomaidis and non zero one artist and theatre director Sarah Butcher. The interview lends an attentive ear to the role of voice in the company’s work, from pre-recorded instruction to live audio interaction

    Workflow for the identification of biotransformation products of amine-containing psychotropic drugs in the aquatic environment

    Get PDF
    Pharmaceuticals are continuously discarded Pharmaceuticals are continuously discarded into the aquatic system through wastewater treatment plants (WWTPs). The microbial degradation of these organic micropollutants and formation of transformation products (TPs) under aerobic conditions is the fundamental process for their elimination. It is of paramount importance to understand the microbial metabolic pathways so as to obtain knowledge of how fast micropollutants degraded and to assess the exposure to their potential TPs as they can be more polar and consequently environmentally persistent. In this study, batch reactors seeded with activated sludge from the WWTP of Athens were set up to assess biotic, abiotic and sorption losses of selective psychotropic drugs, containing amine moieties. Biodegradation and transformation products were identified using liquid chromatography quadrupole-time-offlight mass spectrometry (LC-QToF-MS). A workflow for target, suspect and non-target screening was developed. Data treatment was performed by using metabolite tools accompanying Bruker’s maxis impact ESI-QToF-MS and the structure elucidation of the candidate transformation products was based on accurate mass and isotopic pattern measurements by HRMS and tentative interpretation of MS/MS spectra. Finally four biotransformation products were identified for both lidocaine and ephedrine. Despite the structure similarities, different degradation constants were calculated for each compound

    Well-defined homopolypeptides, copolypeptides, and hybrids of Poly(l-proline)

    Get PDF
    l-Proline is the only, out of 20 essential, amino acid that contains a cyclized substituted α-amino group (is formally an imino acid), which restricts its conformational shape. The synthesis of well-defined homo- and copolymers of l-proline has been plagued either by the low purity of the monomer or the inability of most initiating species to polymerize the corresponding N-carboxy anhydride (NCA) because they require a hydrogen on the 3-N position of the five-member ring of the NCA, which is missing. Herein, highly pure l-proline NCA was synthesized by using the Boc-protected, rather than the free amino acid. The protection of the amine group as well as the efficient purification method utilized resulted in the synthesis of highly pure l-proline NCA. The high purity of the monomer and the use of an amino initiator, which does not require the presence of the 3-N hydrogen, led for the first time to well-defined poly(l-proline) (PLP) homopolymers, poly(ethylene oxide)-b-poly(l-proline), and poly(l-proline)-b-poly(ethylene oxide)-b-poly(l-proline) hybrids, along with poly(γ-benzyl-l-glutamate)-b-poly(l-proline) and poly(Boc-l-lysine)-b-poly(l-proline) copolypeptides. The combined characterization (NMR, FTIR, and MS) that results for the l-proline NCA revealed its high purity. In addition, all synthesized polymers exhibit high molecular and compositional homogeneity

    Multi-residue determination of 10 selected new psychoactive substances in waste water samples by liquid chromatography–tandem mass spectrometry

    Get PDF
    New psychoactive substances (NPSs) have become increasingly popular in recent years. The analysis of these substances in influent wastewater (IWW) can be used to track their use in communities. In addition, an evaluation of the amount of NPSs released to the aquatic environment can be performed through the analysis of effluent wastewater (EWW). This study presents the development, validation and application of an analytical methodology, based on solid phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), for the determination of 10 NPSs in IWW and EWW. Synthetic cannabinoids, cathinones, piperazines and pyrrolidophenones are included among the target analytes. To the authors’ knowledge, it is the first time that eight out of these substances (4’-methylpyrrolidinobutyrophenone (MPPP), a-pyrrolidinopentiophenone (a-PVP), 2-[(1S,3R)-3-hydroxycyclohexyl]-5-(2-methyl-2-octanyl) phenol (CP47,497), (1-naphthyl(1-pentyl-1H-indol-3-yl) methanone (JWH-018), (1-butyl-1H-indol-3-yl)(1-naphthyl) methanone (JWH-073), (4-ethyl-1-naphthyl)(1-pentyl-1H-indol-3-yl) methanone (JWH-210), (4-methyl-1-naphthyl) (1-pentyl-1H-indol-3-yl) methanone (JWH-122) and 2-(2-methoxyphenyl)-1-(1-pentyl-1H-indol-3-yl) ethanone (JWH-250)) are investigated in wastewater. The optimized conditions for the analysis of this set of compounds included a SPE clean-up step using a polymeric sorbent and the use of a pentafluorophenyl (PFP) chromatographic column. Despite the broad range of physicochemical properties of the analytes the method allowed acceptable absolute recoveries (40–109%) for all the studied compounds at different levels of concentration. Low method limits of detection (MLODs) were achieved, ranging between 0.3 and 10 ng/L except for BZP and CP47,497 (20 and 23 ng/L, respectively), allowing a reliable and accurate quantification of the analytes. The method was successfully applied to the analysis of IWW and EWW samples from five wastewater treatment plants (WWTPs) located in Santorini Island (a highly touristic resort in Greece). Four out of 10 compounds (a-PVP, CP47,497, JWH-122 and JWH-210) were detected at least in one sample, being the first evidence of their presence in wastewater. CP47,497 was the most ubiquitous and abundant compound, showing concentrations up to 634 ng/L in some case
    • 

    corecore