3,129 research outputs found

    What can we learn from electromagnetic plasmas about the quark-gluon plasma?

    Full text link
    Ultra-relativistic electromagnetic plasmas can be used for improving our understanding of the quark-gluon plasma. In the weakly coupled regime both plasmas can be described by transport theoretical and quantum field theoretical methods leading to similar results for the plasma properties (dielectric tensor, dispersion relations, plasma frequency, Debye screening, transport coefficients, damping and particle production rates). In particular, future experiments with ultra-relativistic electron-positron plasmas in ultra-strong laser fields might open the possibility to test these predictions, e.g. the existence of a new fermionic plasma wave (plasmino). In the strongly coupled regime electromagnetic plasmas such as complex plasmas can be used as models or at least analogies for the quark-gluon plasma possibly produced in relativistic heavy-ion experiments. For example, pair correlation functions can be used to investigate the equation of state and cross section enhancement for parton scattering can be explained.Comment: 8 pages, 7 figures, talk given at the SCCS 2008 International Conference, 29 July - 2 August 2008, Camerino, Ital

    Collisional Energy Loss of Fast Charged Particles in Relativistic Plasmas

    Get PDF
    Following an argument by Kirzhnits we rederive an exact expression for the energy loss of a fast charged particle in a relativistic plasma using the quantum field theoretical language. We compare this result to perturbative calculations of the collisional energy loss of an energetic electron or muon in an electron-positron plasma and of an energetic parton in the quark-gluon plasma.Comment: 9 pages, LATEX, 2 PostScript figure

    Flow dependence of high pTp_T parton energy loss in heavy-ion collisions

    Full text link
    The measured transverse momentum spectra and HBT correlations of bulk (i.e. low pTp_T) matter can be well explained by assuming that the soft sector of particles produced in ultrarelativistic heavy-ion collisions is (approximately) thermalized and undergoes collective accelerated expansion in both longitudinal and transverse direction. However, this implies that bulk matter will have a non-vanishing flow component transverse to the trajectory of a high pTp_T partonic jets. In general, this will increase the energy loss experienced by the jet parton and modify the shape of the jet cone. In this paper, we present a systematic study of the magnitude of the additional energy loss induced by flow under realistic assumptions for the medium evolution. We argue that a perturbative QGP description may be sufficient for the measured RAAR_{AA} if flow during the medium evolution is taken into account properly

    Structure Functions and Pair Correlations of the Quark-Gluon Plasma

    Full text link
    Recent experiments at RHIC and theoretical considerations indicate that the quark-gluon plasma, present in the fireball of relativistic heavy-ion collisions, might be in a liquid phase. The liquid state can be identified by characteristic correlation and structure functions. Here definitions of the structure functions and pair correlations of the quark-gluon plasma are presented as well as perturbative results. These definitions might be useful for verifying the quark-gluon-plasma liquid in QCD lattice calculations.Comment: 9 pages, 1 figure, revised version (new remark on the coupling parameter on page 2), to be published in Phys. Rev.

    Ultrarelativistic electron-positron plasma

    Get PDF
    Ultrarelativistic electron-positron plasmas can be produced in high-intensity laser fields and play a role in various astrophysical situations. Their properties can be calculated using QED at finite temperature. Here we will use perturbative QED at finite temperature for calculating various important properties, such as the equation of state, dispersion relations of collective plasma modes of photons and electrons, Debye screening, damping rates, mean free paths, collision times, transport coefficients, and particle production rates, of ultrarelativistic electron-positron plasmas. In particular, we will focus on electron-positron plasmas produced with ultra-strong lasers.Comment: 8 pages, 8 figures, 1 table, invited talk presented at the ELI Workshop and School on Fundamental Physics with Ultra-high Fields (September 29 - October 2, 2008, Frauenwoerth, Germany

    Collective Excitations of Supersymmetric Plasma

    Full text link
    Collective excitations of N = 1 supersymmetric electromagnetic plasma are studied. Since the Keldysh-Schwinger approach is used, not only equilibrium but also non-equilibrium plasma, which is assumed to be ultrarelativistic, is under consideration. The dispersion equations of photon, photino, electron and selectron modes are written down and the self-energies, which enter the equations, are computed in the Hard Loop Approximation. The self-energies are discussed in the context of effective action which is also given. The photon modes and electron ones appear to be the same as in the usual ultrarelativistic plasma of electrons, positrons and photons. The photino modes coincide with the electron ones and the selectron modes are as of free relativistic massive particle.Comment: 14 pages, typos corrected, Phys. Rev. D in prin
    • …
    corecore