1 research outputs found

    Covalent Co–O–V and Sb–N Bonds Enable Polyoxovanadate Charge Control

    No full text
    The formation of [{Co<sup>II</sup>(teta)<sub>2</sub>}­{Co<sup>II</sup><sub>2</sub>(tren)­(teta)<sub>2</sub>}­V<sup>IV</sup><sub>15</sub>Sb<sup>III</sup><sub>6</sub>O<sub>42</sub>(H<sub>2</sub>O)]·ca.9H<sub>2</sub>O [teta = triethylenetetraamine; tren = tris­(2-aminoethyl)­amine] illustrates a strategy toward reducing the molecular charge of polyoxovanadates, a key challenge in their use as components in single-molecule electronics. Here, a V–O–Co bond to a binuclear Co<sup>2+</sup>-centered complex and a Sb–N bond to the terminal N atom of a teta ligand of a mononuclear Co<sup>2+</sup> complex allow for full charge compensation of the archetypal molecular magnet [V<sub>15</sub>Sb<sub>6</sub>O<sub>42</sub>(H<sub>2</sub>O)]<sup>6–</sup>. Density functional theory based electron localization function analysis demonstrates that the Sb–N bond has an electron density similar to that of a Sb–O bond. Magnetic exchange coupling between the V<sup>IV</sup> and Co<sup>II</sup> spin centers mediated via the Sb–N bridge is comparably weakly antiferromagnetic
    corecore