10 research outputs found

    Effect of the Sliding of Stacked Live Loads on the Seismic Response of Structures

    Get PDF
    Dynamic interaction between sliding live loads and the structure they act on is significant in the seismic analysis and design of the structure. The problem becomes more complex when the live loads are in the form of stacks. This paper presents a numerical model to simulate the dynamic interaction between a primary structure (PS) and a set of stacked bodies lying on it. Individual bodies in the stack were termed as secondary bodies (SBs) in this study. The lowest SB in the stack interacts with the structure through friction. Similar frictional forces also exist between different levels of the stack. This numerical model was verified with a Finite Element model. A parametric study was performed on the seismic response by varying the dynamic properties of the structure and SBs. The energy dissipation is found to be significant due to sliding within the stack. A novel methodology is proposed to calculate a modified structural period (Tnew) of the structure to use in its design. It was found that the Tnew varies significantly with the structural period, mass ratios, and coefficients of friction. Finally, design equations are proposed to calculate the Tnew . Two Indian seismic hazard levels were considered for this study

    Chiral spin textures creation and dynamics in a rectangular nanostructure

    Full text link
    Controlled creation of stable chiral spin textures is required to use them as an energy-efficient information carrier in spintronics. Here we have studied the stable creation of isolated chiral spin texture (skyrmion and antiskyrmion) and its pair through the magnetization reversal of a rectangular nanostructure using spin-polarized currents. An isolated spin texture is created through a negative current pulse. Dynamics of the stable spin texture are explored under external magnetic fields, and the resonant frequencies are calculated. A stable skyrmion pair is created using an asymmetric current pulse, and their interaction is studied using the Thiele equation. The stability of isolated or paired spin texture depends on the DMI strength, spin-polarized current density, and pulse duration. In addition, the stability of the skyrmion pair depends on their initial separation, and a threshold for the separation between skyrmions of 78 nm is observed.Comment: 29 pages, 11 figures, 2 extra figure

    Monocyte tissue factor–dependent activation of coagulation in hypercholesterolemic mice and monkeys is inhibited by simvastatin

    Get PDF
    Hypercholesterolemia is a major risk factor for atherosclerosis. It also is associated with platelet hyperactivity, which increases morbidity and mortality from cardiovascular disease. However, the mechanisms by which hypercholesterolemia produces a procoagulant state remain undefined. Atherosclerosis is associated with accumulation of oxidized lipoproteins within atherosclerotic lesions. Small quantities of oxidized lipoproteins are also present in the circulation of patients with coronary artery disease. We therefore hypothesized that hypercholesterolemia leads to elevated levels of oxidized LDL (oxLDL) in plasma and that this induces expression of the procoagulant protein tissue factor (TF) in monocytes. In support of this hypothesis, we report here that oxLDL induced TF expression in human monocytic cells and monocytes. In addition, patients with familial hypercholesterolemia had elevated levels of plasma microparticle (MP) TF activity. Furthermore, a high-fat diet induced a time-dependent increase in plasma MP TF activity and activation of coagulation in both LDL receptor–deficient mice and African green monkeys. Genetic deficiency of TF in bone marrow cells reduced coagulation in hypercholesterolemic mice, consistent with a major role for monocyte-derived TF in the activation of coagulation. Similarly, a deficiency of either TLR4 or TLR6 reduced levels of MP TF activity. Simvastatin treatment of hypercholesterolemic mice and monkeys reduced oxLDL, monocyte TF expression, MP TF activity, activation of coagulation, and inflammation, without affecting total cholesterol levels. Our results suggest that the prothrombotic state associated with hypercholesterolemia is caused by oxLDL-mediated induction of TF expression in monocytes via engagement of a TLR4/TLR6 complex
    corecore