86 research outputs found

    Bioethanol Production Using Saccharomyces cerevisae Cultivated In Sugarcorn Juice

    Get PDF
    For the first time, juice extracted from sugarcorn, a new Canadian energy crop, was used for bioethanol production. Physical and chemical characteristics of sugarcorn juice (SCJ) were determined. SCJ contained a maximum of 145 g/L of carbohydrates, with sucrose, glucose and fructose together contributing 80%. Effect of autoclaving and carbon filtration on juice sugars were investigated. Shake flask fermentations using Saccharomyces cerevisiae grown in yeast extract supplemented SCJ produced a maximum of 45.6 g/L ethanol in 72 h. Bioreactor studies using un-supplemented SCJ achieved 40 g/L ethanol in 26 h, yielding a maximum of 0.46 g ethanol/g fermentable sugars, representing 90.4% of theoretical yield. Sugarcorn’s crop features and juice characteristics were compared with those of sugarcane, sweet sorghum and energy cane. A proposed sugarcorn based bioethanol process was compared with corn and corn stover based processes. A Canadian sugarcorn (CANSUG) biorefinery was proposed for production of renewable fuels and chemicals

    Entropy driven spontaneous formation of highly porous films from polymer-nanoparticle composites

    Get PDF
    doi: 10.1088/0957-4484/20/42/425602Nanoporous materials have become indispensable in many fields ranging from photonics, catalysis and semiconductor processing to biosensor infrastructure. Rapid and energy efficient process fabrication of these materials is, however, nontrivial. In this communication, we describe a simple method for the rapid fabrication of these materials from colloidal dispersions of Polymethyl Silsesquioxane nanoparticles. Nanoparticle-polymer composites above the decomposition temperature of the polymer are examined and the entropic gain experienced by the nanoparticles in this rubric is harnessed to fabricate novel highly porous films composed of nanoparticles. Optically smooth, hydrophobic films with low refractive indices (as low as 1.048) and high surface areas (as high as 1325 m2 g−1) have been achieved with this approach. In this communication we address the behavior of such systems that are both temperature and substrate surface energy dependent. The method is applicable, in principle, to a variety of nanoparticle-polymer systems to fabricate custom nanoporous materials.We gratefully acknowledge the financial support from National Institute of Health (Award number 2-U42RR014821) and the US army

    Design and development of nanoenergetic materials with tunable combustion characteristics [abstract]

    Get PDF
    In recent years, nanoengineered thermites with tunable and tailored characteristics have attracted a great deal of attention owing to their enormous potential as excellent reactive materials, green primers, and structural energetic materials etc. Nanothermites are typically composed of metal oxide (oxidizer) and metal (fuel) nanoparticles. A variety of nanostructured oxidizers such as Fe2O3, CuO, Bi2O3 and MoO3 etc have been prepared in our laboratory. Various morphologies of oxidizers include nanorods, nanoparticles, and mesoporous structures exhibiting high surface area. Surfactant templating method has been developed for the synthesis of ammonium nitrate (NH4NO3) nanoparticles with a size distribution of 10-100nm. The physical and the chemical properties such as morphology, surface area, purity, composition, crystal structure of these metal oxide nanostructures have been determined by a host of characterization tools. Among the nanothermites, CuO nanorods/Al nanoparticles exhibit the best combustion performance measured in terms of combustion wave speed of 2600 100 m/s and reactivity of 11 1 MPa/msec. Nanothermites based on CuO nanorods/Al nanoparticles were then modified by mixing with polymers such as nitrocellulose (NC) and/or explosives such as (NH4NO3) nanoparticles, RDX (micron and nano size) and CL20 and the reaction rates of these nanocomposites were determined. Among the polymers, nitrocellulose coating of nanothermites is very interesting. Both the NC and the Teflon coated CuO/Al based nanothermite systems exhibit the ability to generate shock waves during their fast combustion. The NC coating has shown tremendous potential to reduce the high sensitivity of nanothermites to electrostatic discharge (ESD), friction and impact. Experimentally measured combustion characteristics are found to correlate very well with the physical and chemical characteristics of metal oxide nanostructures. The developed technology in our lab demonstrates the potential to tune and tailor the combustion characteristics of nanothermites to the desired level by proper choice and combination of fuel and oxidizer materials, their dimensions, and the process of self-assembly with reduced sensitivity. Potential Areas of Applications: * Microthrusters; * Propellants; * Propellant Initiators; * Suitable Replacements for Lead and Sulfur based Primers; * Shockwave drug delivery system

    Trioctylphosphine as Both Solvent and Stabilizer to Synthesize CdS Nanorods

    Get PDF
    High quality CdS nanorods are synthesized reproducibly with cadmium acetate and sulfur as precursors in trioctylphosphine solution. The morphology, crystalline form and phase composition of CdS nanorods are characterized by transmission electron microscopy (TEM), high-resolution TEM and X-ray diffraction (XRD). CdS nanorods obtained are uniform with an aspect ratio of about 5:1 and in a wurtzite structure. The influence of reaction conditions on the growth of CdS nanorods demonstrates that low precursor concentration and high reaction temperature (260 °C) are favorable for the formation of uniform CdS nanorods with 85.3% of product yield

    Single Crystalline Cadmium Sulfide Nanowires with Branched Structure

    Get PDF
    In this article, we report the synthesis of branched single crystal CdS nanowires. This branched CdS nanostructure is prepared by a simple surfactant-directing method, which is of particular interest as it uses readily available reagents and provides a convenient route to high-yield single crystal nanowires but with branched shape. These branched nanowires have an average diameter of about 40 nm and length up to several micrometers. A possible mechanism has been proposed and the addition of surfactant dodecylthiol into the two mixed-solvents would play an importance effect on the structure of the product. Based on the mechanism, by controlling the synthesis conditions, such as the ratios between the surfactant, inorganic solvent, and organic solvent, other kinds of nanostructures based on CdS nanowires were also prepared. Photoluminescence (PL) measurement reveals that the branched CdS nanowires have a strong emission at about 700 nm which might be due to its special structure

    Ordered Mesostructured CdS Nanowire Arrays with Rectifying Properties

    Get PDF
    Highly ordered mesoporous CdS nanowire arrays were synthesized by using mesoporous silica as hard template and cadmium xanthate (CdR2) as a single precursor. Upon etching silica, mesoporous CdS nanowire arrays were produced with a yield as high as 93 wt%. The nanowire arrays were characterized by XRD, N2adsorption, TEM, and SEM. The results show that the CdS products replicated from the mesoporous silica SBA-15 hard template possess highly ordered hexagonal mesostructure and fiber-like morphology, analogous to the mother template. The current–voltage characteristics of CdS nanoarrays are strongly nonlinear and asymmetrical, showing rectifying diode-like behavior

    Madras general sales tax act a study

    No full text
    corecore