53 research outputs found
Targeting Pancreatic Ductal Adenocarcinoma Acidic Microenvironment
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer death in the USA, accounting for ~40,000 deaths annually. The dismal prognosis for PDAC is largely due to its late diagnosis. Currently, the most sensitive diagnosis of PDAC requires invasive procedures, such as endoscopic ultrasonography, which has inherent risks and accuracy that is highly operator dependent. Here we took advantage of a general characteristic of solid tumors, the acidic microenvironment that is generated as a by-product of metabolism, to develop a novel approach of using pH (Low) Insertion Peptides (pHLIPs) for imaging of PDAC. We show that fluorescently labeled pHLIPs can localize and specifically detect PDAC in human xenografts as well as PDAC and PanIN lesions in genetically engineered mouse models. This novel approach may improve detection, differential diagnosis and staging of PDAC
Suppression of pancreatic cancer by sulfated non-anticoagulant low molecular weight heparin
Sulfated non-anticoagulant heparins (S-NACHs) might be preferred for potential clinical use in cancer patients without affecting hemostasis as compared to low molecular weight heparins (LMWHs). We investigated anti-tumor effects, anti-angiogenesis effects, and mechanisms of S-NACH in a mouse model of pancreatic cancer as compared to the LMWH tinzaparin. S-NACH or tinzaparin with or without gemcitabine were administered, and tumor luminescent signal intensity, tumor weight, and histopathology were assessed at the termination of the study. S-NACH and LMWH efficiently inhibited tumor growth and metastasis, without any observed bleeding events with S-NACH as compared to tinzaparin. S-NACH distinctly increased tumor necrosis and enhanced gemcitabine response in the mouse pancreatic cancer models. These data suggest the potential implication of S-NACH as a neoadjuvant in pancreatic cancer.United States Department of Health & Human Services
National Institutes of Health (NIH) - USA (1R21CA124931-01)United States Department of Health & Human Services
National Institutes of Health (NIH) - USA
NIH National Cancer Institute (NCI) (R21CA124931
Detection of pancreatic cancer tumours and precursor lesions by cathepsin E activity in mouse models.
ABSTRACT Background and Aims Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer death in the USA. Surgical resection is the only effective treatment; however, only 20% of patients are candidates for surgery. The ability to detect early PDAC would increase the availability of surgery and improve patient survival. This study assessed the feasibility of using the enzymatic activity of cathepsin E (Cath E), a protease highly and specifically expressed in PDAC, as a novel biomarker for the detection of pancreas-bearing pancreatic intraepithelial neoplasia (PanIN) lesions and PDAC. Methods Pancreas from normal, chronic pancreatitis and PDAC patients was assessed for Cath E expression by quantitative real-time PCR and immunohistochemistry. Human PDAC xenografts and genetically engineered mouse models (GEMM) of PDAC were injected with a Cath E activity selective fluorescent probe and imaged using an optical imaging system. Results The specificity of Cath E expression in PDAC patients and GEMM of pancreatic cancer was confirmed by quantitative real-time PCR and immunohistochemistry. The novel probe for Cath E activity specifically detected PDAC in both human xenografts and GEMM in vivo. The Cath E sensitive probe was also able to detect pancreas with PanIN lesions in GEMM before tumour formation. Conclusions The elevated Cath E expression in PanIN and pancreatic tumours allowed in-vivo detection of human PDAC xenografts and imaging of pancreas with PanIN and PDAC tumours in GEMM. Our results support the usefulness of Cath E activity as a potential molecular target for PDAC and early detection imaging. Despite great efforts to help patients with pancreatic ductal adenocarcinoma (PDAC) in the past few years, this disease remains devastating with the worst outcome of all major cancers. In the USA, PDAC ranks 10th in terms of incidence, but for both men and women, it is fourth in terms of cancer deaths. Although many molecular biomarker candidates of PDAC have been identified, 3 biomarkers with the necessary sensitivity and specificity for early detection are still lacking. 4e6 The most widely utilised blood-based biomarker is CA 19-9, which is not expressed in all patients, is not highly specific as it is elevated in other gastrointestinal cancers, and is not useful for the detection of early disease. 7 8 Furthermore, CA 19-9 levels do not provide information about the localisation of the disease nor the existence of metastases. The most sensitive diagnosis of PDAC currently requires invasive imaging procedures such as endoscopic ultrasonography, which Significance of this study What is already known about this subject? < No highly specific and sensitive biomarkers are clinically available for the detection of PDAC at an early stage. < Cath E is highly overexpressed in many cancers including PDAC. < A Cath E selective peptide was recently identified that specifically detects its enzymatic activity. What are the new findings? < We demonstrate that the elevated levels of Cath E expression in early pancreatic cancer lesions and pancreatic tumours could be exploited for PDAC detection. < We illustrate that the detection and localisation of PDAC in mouse xenografts and GEMM was possible utilising the outstanding specificity of a novel Cath E-activatable imaging probe. How might it impact on clinical practice in the foreseeable future? < The ability to detect and visualise pancreatic tumours and PanIN in PDAC by virtue of Cath E activity sensitive probes in preclinical mouse models suggests that modifications of this approach will be useful for the early detection and management of this deadly cancer in patients. < The specificity of Cath E activity for PDAC suggests that this enzymatic activity will be useful in the future for the development of novel therapeutics or theranostics. Cruz-Monserrate Z, Abd-Elgaliel WR, Grote T, et al. Gut (2011)
Network pharmacology: an efficient but underutilized approach in oral, head and neck cancer therapy—a review
The application of network pharmacology (NP) has advanced our understanding of the complex molecular mechanisms underlying diseases, including neck, head, and oral cancers, as well as thyroid carcinoma. This review aimed to explore the therapeutic potential of natural network pharmacology using compounds and traditional Chinese medicines for combating these malignancies. NP serves as a pivotal tool that provides a comprehensive view of the interactions among compounds, genes, and diseases, thereby contributing to the advancement of disease treatment and management. In parallel, this review discusses the significance of publicly accessible databases in the identification of oral, head, and neck cancer-specific genes. These databases, including those for head and neck oral cancer, head and neck cancer, oral cancer, and genomic variants of oral cancer, offer valuable insights into the genes, miRNAs, drugs, and genetic variations associated with these cancers. They serve as indispensable resources for researchers, clinicians, and drug developers, contributing to the pursuit of precision medicine and improved treatment of these challenging malignancies. In summary, advancements in NP could improve the globalization and modernization of traditional medicines and prognostic targets as well as aid in the development of innovative drugs. Furthermore, this review will be an eye-opener for researchers working on drug development from traditional medicines by applying NP approaches
Adrenomedullin is up-regulated in patients with pancreatic cancer and causes insulin resistance in β cells and mice
New-onset diabetes in patients with pancreatic cancer is likely to be a paraneoplastic phenomenon caused by tumor-secreted products. We aimed to identify the diabetogenic secretory product(s) of pancreatic cancer. Methods: Using microarray analysis, we identified adrenomedullin as a potential mediator of diabetes in patients with pancreatic cancer. Adrenomedullin was up-regulated in pancreatic cancer cell lines, in which supernatants reduced insulin signaling in beta cell lines. We performed quantitative reverse-transcriptase polymerase chain reaction and immunohistochemistry on human pancreatic cancer and healthy pancreatic tissues (controls) to determine expression of adrenomedullin messenger RNA and protein, respectively. We studied the effects of adrenomedullin on insulin secretion by beta cell lines and whole islets from mice and on glucose tolerance in pancreatic xenografts in mice. We measured plasma levels of adrenomedullin in patients with pancreatic cancer, patients with type 2 diabetes mellitus, and individuals with normal fasting glucose levels (controls). Results: Levels of adrenomedullin messenger RNA and protein were increased in human pancreatic cancer samples compared with controls. Adrenomedullin and conditioned media from pancreatic cell lines inhibited glucose-stimulated insulin secretion from beta cell lines and islets isolated from mice; the effects of conditioned media from pancreatic cancer cells were reduced by small hairpin RNA-mediated knockdown of adrenomedullin. Conversely, overexpression of adrenomedullin in mice with pancreatic cancer led to glucose intolerance. Mean plasma levels of adrenomedullin (femtomoles per liter) were higher in patients with pancreatic cancer compared with patients with diabetes or controls. Levels of adrenomedullin were higher in patients with pancreatic cancer who developed diabetes compared those who did not. Conclusions: Adrenomedullin is up-regulated in patients with pancreatic cancer and causes insulin resistance in β cells and mice.Fil: Aggarwal, Gaurav. Mayo Clinic College of Medicine; Estados UnidosFil: Ramachandran, Vijaya. University of Texas Health Science Center at Houston. University of Texas Md Anderson Cancer Center; Estados UnidosFil: Javeed, Naureen. Mayo Clinic College of Medicine; Estados UnidosFil: Arumugam, Thiruvengadam. University of Texas Health Science Center at Houston. University of Texas Md Anderson Cancer Center; Estados UnidosFil: Dutta, Shamit. Mayo Clinic College of Medicine; Estados UnidosFil: Klee, George G.. Mayo Clinic College of Medicine; Estados UnidosFil: Klee, Eric W.. Mayo Clinic College of Medicine; Estados UnidosFil: Smyrk, Thomas C.. Mayo Clinic College of Medicine; Estados UnidosFil: Bamlet, William. Mayo Clinic College of Medicine; Estados UnidosFil: Han, Jing Jing. Mayo Clinic College of Medicine; Estados UnidosFil: Rumie Vittar, Natalia Belen. Mayo Clinic College of Medicine; Estados Unidos. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas, FisicoquĂmicas y Naturales. Departamento de BiologĂa Molecular. SecciĂłn QuĂmica BiolĂłgica; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: De Andrade, Mariza. Mayo Clinic College of Medicine; Estados UnidosFil: Mukhopadhyay, Debabrata. Mayo Clinic College of Medicine; Estados UnidosFil: Petersen, Gloria M.. Mayo Clinic College of Medicine; Estados UnidosFil: Fernandez Zapico, Martin Ernesto. Mayo Clinic College of Medicine; Estados UnidosFil: Logsdon, Craig D.. University of Texas Health Science Center at Houston. University of Texas Md Anderson Cancer Center; Estados UnidosFil: Chari, Suresh T.. Mayo Clinic College of Medicine; Estados Unido
The ADMR Receptor Mediates the Effects of Adrenomedullin on Pancreatic Cancer Cells and on Cells of the Tumor Microenvironment
Adrenomedullin (AM) is highly expressed in pancreatic cancer and stimulates pancreatic cancer cells leading to increased tumor growth and metastasis. The current study examines the role of specific AM receptors on tumor and cells resembling the tumor microenvironment (human pancreatic stellate--HPSC, human umbilical vein-- HUVEC and mouse lung endothelial cells--MLEC).AM receptors ADMR and CRLR were present in HPSC, HUVEC and MLECs while PDAC cells possessed only ADMR receptors as assessed by RT-PCR and western blotting. All cell lines expressed and secreted AM as indicated by ELISA. The growth of each of the cell lines was stimulated by exogenous AM and inhibited by the antagonist AMA. AM also stimulated in vitro angiogenesis assessed by polygon formation of endothelial cell lines. SiRNA-mediated silencing of ADMR, but not CRLR, reduced basal growth of all cells examined and reduced polygon formation of endothelial cells in vitro. Orthotopic tumors developed with shADMR bearing cancer cells had dramatically reduced primary tumor volume (>90%) and lung and liver metastasis compared to shControl bearing cells. To validate ADMR as a potential therapeutic target, in vivo studies were conducted using neutral nanoliposomes to systemically deliver human siRNA to ADMR to silence human cancer cells and mouse siRNA to ADMR to silence mouse tumor stromal cells. Systemic silencing of both human and mouse ADMR had no obvious adverse effects but strongly reduced tumor development.ADMR mediates the stimulatory effects of AM on cancer cells and on endothelial and stellate cells within the tumor microenvironment. These data support the further development of ADMR as a useful target treatment of pancreatic cancer
Hematogenous Metastasis of Ovarian Cancer: Rethinking Mode of Spread
SummaryOvarian cancer has a clear predilection for metastasis to the omentum, but the underlying mechanisms involved in ovarian cancer spread are not well understood. Here, we used a parabiosis model that demonstrates preferential hematogenous metastasis of ovarian cancer to the omentum. Our studies revealed that the ErbB3-neuregulin 1 (NRG1) axis is a dominant pathway responsible for hematogenous omental metastasis. Elevated levels of ErbB3 in ovarian cancer cells and NRG1 in the omentum allowed for tumor cell localization and growth in the omentum. Depletion of ErbB3 in ovarian cancer impaired omental metastasis. Our results highlight hematogenous metastasis as an important mode of ovarian cancer metastasis. These findings have implications for designing alternative strategies aimed at preventing and treating ovarian cancer metastasis
- …