1 research outputs found

    Catalytic Reductive <i>ortho</i>-C–H Silylation of Phenols with Traceless, Versatile Acetal Directing Groups and Synthetic Applications of Dioxasilines

    No full text
    A new, highly selective, bond functionalization strategy, achieved via relay of two transition metal catalysts and the use of traceless acetal directing groups, has been employed to provide facile formation of C–Si bonds and concomitant functionalization of a silicon group in a single vessel. Specifically, this approach involves the relay of Ir-catalyzed hydrosilylation of inexpensive and readily available phenyl acetates, exploiting disubstituted silyl synthons to afford silyl acetals and Rh-catalyzed <i>ortho</i>-C–H silylation to provide dioxasilines. A subsequent nucleophilic addition to silicon removes the acetal directing groups and directly provides unmasked phenol products and, thus, useful functional groups at silicon achieved in a single vessel. This traceless acetal directing group strategy for catalytic <i>ortho-</i>C–H silylation of phenols was also successfully applied to preparation of multisubstituted arenes. Remarkably, a new formal α-chloroacetyl directing group has been developed that allows catalytic reductive C–H silylation of sterically hindered phenols. In particular, this new method permits access to highly versatile and nicely differentiated 1,2,3-trisubstituted arenes that are difficult to access by other catalytic routes. In addition, the resulting dioxasilines can serve as chromatographically stable halosilane equivalents, which allow not only removal of acetal directing groups but also introduce useful functional groups leading to silicon-bridged biaryls. We demonstrated that this catalytic C–H bond silylation strategy has powerful synthetic potential by creating direct applications of dioxasilines to other important transformations, examples of which include aryne chemistry, Au-catalyzed direct arylation, sequential orthogonal cross-couplings, and late-stage silylation of phenolic bioactive molecules and BINOL scaffolds
    corecore