561 research outputs found
Viscosity Dependence of the Folding Rates of Proteins
The viscosity dependence of the folding rates for four sequences (the native
state of three sequences is a beta-sheet, while the fourth forms an
alpha-helix) is calculated for off-lattice models of proteins. Assuming that
the dynamics is given by the Langevin equation we show that the folding rates
increase linearly at low viscosities \eta, decrease as 1/\eta at large \eta and
have a maximum at intermediate values. The Kramers theory of barrier crossing
provides a quantitative fit of the numerical results. By mapping the simulation
results to real proteins we estimate that for optimized sequences the time
scale for forming a four turn \alpha-helix topology is about 500 nanoseconds,
whereas the time scale for forming a beta-sheet topology is about 10
microseconds.Comment: 14 pages, Latex, 3 figures. One figure is also available at
http://www.glue.umd.edu/~klimov/seq_I_H.html, to be published in Physical
Review Letter
Transient Thermal Stresses In A Sphere By Local Heating
The problem of transient thermal stresses in a solid, elastic, homogeneous, and isotropic sphere is solved for uniform and nonuniform, local surface heating. The temperature solutions are obtained by using separation of variables and integral transformation. The corresponding thermal stresses are derived by superposing a particular displacement potential function on Boussinesq solutions. Numerical solutions for two particular cases of localized heating of a typical brittle spherical solid have been obtained and presented. The results indicate a tensile stress concentration in the interior of the solid below the heated zone. © 1974 by ASME
Ethnobotanical Study of Medicinal Plants used by the Local People in Vellore District, Tamilnadu, India
An ethnobotanical survey was conducted in and around Vellore district to study the various medicinal plants used by the people for the treatment of their ailments such as fever, cold, cough, diabetes, jaundice, diarrhoea, rheumatism, snake bite, and headache. The study also covered the methods used in plant extraction, and the dose, duration and mode of application
Magnetic field stabilization system for atomic physics experiments
Atomic physics experiments commonly use millitesla-scale magnetic fields to
provide a quantization axis. As atomic transition frequencies depend on the
amplitude of this field, many experiments require a stable absolute field. Most
setups use electromagnets, which require a power supply stability not usually
met by commercially available units. We demonstrate stabilization of a field of
14.6 mT to 4.3 nT rms noise (0.29 ppm), compared to noise of 100 nT
without any stabilization. The rms noise is measured using a field-dependent
hyperfine transition in a single Ca ion held in a Paul trap at the
centre of the magnetic field coils. For the Ca "atomic clock" qubit
transition at 14.6 mT, which depends on the field only in second order, this
would yield a projected coherence time of many hours. Our system consists of a
feedback loop and a feedforward circuit that control the current through the
field coils and could easily be adapted to other field amplitudes, making it
suitable for other applications such as neutral atom traps.Comment: 6 pages, 5 figure
- …