532 research outputs found

    Extraction and correlation of total phenolic and flavonoid contents in seaweeds collected from Rameshwaram during pre- and post- monsoon period using different solvent systems with their antioxidant activity

    Get PDF
    The present study was carried out to compare and correlate the phenolic and flavonoid contents of Turbinaria sp., Sargassum sp. and Gracilaria sp. extracted using different solvents including methanol, isopropyl alcohol, acetone, acetonitrile, ethyl acetate and hexane, and elucidated for their anti-oxidant activity. The total phenolic and flavonoid contents of the solvent extracts were determined using the Folin-Ciocalteau assay and aluminium chloride colorimetric assay with gallic acid and quercetin as standards, respectively. The anti-oxidant activity in phenolic and flavonoid content was also estimated by phosphomolybdenum method and was compared with gallic acid and quercetin standard. The quantitative analysis of flavonoid content reveals that methanolic extract of Sargassum sp. (9.56±0.38 mg QE/g during pre-monsoon and 9.44±0.48 mg QE/g during post-monsoon season); acetone extract of Gracilaria sp. (2.16±0.11 mg QE/g during pre-monsoon and 2.12±0.07 mg QE/g during post-monsoon season) and methanolic extract of Turbinaria sp. (4.11±0.12 mg QE/g during pre-monsoon and 4.22±0.15 mg QE/g during post-monsoon season) had higher concentration of flavonoid content. However, the quantitative analysis of phenolic content was found to be lower in all the seaweed extracts as compared to flavonoids. The anti-oxidant activity of a phenolic content and flavonoid content were also found to be correlated. The findings of the current study conclusively demonstrate the content of phenolic and flavonoid compounds significantly correlate with anti-oxidant activity

    Infection of Rrs1 barley by an incompatible race of the fungus Rhynchosporium secalis expressing the green fluorescent protein

    Get PDF
    Scald disease of barley, caused by the fungal pathogen Rhynchosporium secalis, is one of the most serious diseases of this crop worldwide. Disease control is achieved in part by deployment of major resistance (Rrs) genes in barley. However, in both susceptible and resistant barley plants, R. secalis is able to complete a symptomless infection cycle. To examine the R. secalis infection cycle, Agrobacterium tumefaciens-mediated transformation was used to generate R. secalis isolates expressing the green fluorescent protein or DsRed fluorescent protein, and that were virulent on an Rrs2 plant (cv. Atlas), but avirulent on an Rrs1 plant (cv. Atlas 46). Confocal laser scanning microscopy revealed that R. secalis infected the susceptible cultivar and formed an extensive hyphal network that followed the anticlinal cell walls of epidermal cells. In the resistant cultivar, hyphal development was more restricted and random in direction of growth. In contrast to earlier models of R. secalis infection, epidermal collapse was not observed until approximately 10 days post-inoculation in both cultivars. Sporulation of R. secalis was observed in both susceptible and resistant interactions. Observations made using the GFP-expressing isolate were complemented and confirmed using a combination of the fluorescent probes 5-chloromethylfluorescein diacetate and propidium iodide, in the non-transformed wild-type isolate. The findings will enable the different Rrs genes to be better characterized in the effect they exert on pathogen growth and may aid in identification of the most effective resistance

    Effect of Humic Acid on Seed Germination of Raphanus sativus L

    Get PDF
    Abstract: In the present study, we have tested the effect of humic acid on seed germination of Radish (Raphanus sativus). Seeds were soaked in various concentrations (0.1%, 0.25%, 0.5%, 0.75% and 1%) of humic acid at different time periods (10, 60, 120, 180 and 240 minutes). After 7 days, the seeds were analysed for their germination capacity, root and shoot length. The study infers that humic acid with the concentration of 0.25% showed maximum seed germination (100%) and the optimum shoot and root length was recorded as 6.175cm and 11.46cm respectively after 60 minutes soaking

    Gravitational Waves From Known Pulsars: Results From The Initial Detector Era

    Get PDF
    We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and Virgo. We do not see evidence for gravitational wave emission from any of the targeted sources but produce upper limits on the emission amplitude. We highlight the results from seven young pulsars with large spin-down luminosities. We reach within a factor of five of the canonical spin-down limit for all seven of these, whilst for the Crab and Vela pulsars we further surpass their spin-down limits. We present new or updated limits for 172 other pulsars (including both young and millisecond pulsars). Now that the detectors are undergoing major upgrades, and, for completeness, we bring together all of the most up-to-date results from all pulsars searched for during the operations of the first-generation LIGO, Virgo and GEO600 detectors. This gives a total of 195 pulsars including the most recent results described in this paper.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyAustralian Research CouncilInternational Science Linkages program of the Commonwealth of AustraliaCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Economia y CompetitividadConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsNetherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFOCUS Programme of Foundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space AdministrationOTKA of HungaryLyon Institute of Origins (LIO)National Research Foundation of KoreaIndustry CanadaProvince of Ontario through the Ministry of Economic Development and InnovationNational Science and Engineering Research Council CanadaCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationAstronom

    Searches for Continuous Gravitational Waves from Nine Young Supernova Remnants

    Get PDF
    We describe directed searches for continuous gravitational waves (GWs) in data from the sixth Laser Interferometer Gravitational-wave Observatory (LIGO) science data run. The targets were nine young supernova remnants not associated with pulsars; eight of the remnants are associated with non-pulsing suspected neutron stars. One target's parameters are uncertain enough to warrant two searches, for a total of 10. Each search covered a broad band of frequencies and first and second frequency derivatives for a fixed sky direction. The searches coherently integrated data from the two LIGO interferometers over time spans from 5.3–25.3 days using the matched-filtering F-statistic. We found no evidence of GW signals. We set 95% confidence upper limits as strong (low) as 4 × 10^(−25) on intrinsic strain, 2 × 10^(−7) on fiducial ellipticity, and 4 × 10^(−5) on r-mode amplitude. These beat the indirect limits from energy conservation and are within the range of theoretical predictions for neutron-star ellipticities and r-mode amplitudes

    Observation of Gravitational Waves from a Binary Black Hole Merger

    Get PDF
    On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10^(−21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410 +160/−180  Mpc corresponding to a redshift z=0.09 +0.03/−0.04. In the source frame, the initial black hole masses are 36+5−4M_⊙ and 29+4−4M_⊙, and the final black hole mass is 62+4−4M⊙, with 3.0+0.5−0.5M_⊙c^2 radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger
    corecore