24 research outputs found

    Assembly and analysis of a male sterile rubber tree mitochondrial genome reveals DNA rearrangement events and a novel transcript

    Get PDF
    BACKGROUND: The rubber tree, Hevea brasiliensis, is an important plant species that is commercially grown to produce latex rubber in many countries. The rubber tree variety BPM 24 exhibits cytoplasmic male sterility, inherited from the variety GT 1. RESULTS: We constructed the rubber tree mitochondrial genome of a cytoplasmic male sterile variety, BPM 24, using 454 sequencing, including 8 kb paired-end libraries, plus Illumina paired-end sequencing. We annotated this mitochondrial genome with the aid of Illumina RNA-seq data and performed comparative analysis. We then compared the sequence of BPM 24 to the contigs of the published rubber tree, variety RRIM 600, and identified a rearrangement that is unique to BPM 24 resulting in a novel transcript containing a portion of atp9. CONCLUSIONS: The novel transcript is consistent with changes that cause cytoplasmic male sterility through a slight reduction to ATP production efficiency. The exhaustive nature of the search rules out alternative causes and supports previous findings of novel transcripts causing cytoplasmic male sterility

    Uncovering full-length transcript isoforms of sugarcane cultivar Khon Kaen 3 using single-molecule long-read sequencing

    Get PDF
    Background Sugarcane is an important global food crop and energy resource. To facilitate the sugarcane improvement program, genome and gene information are important for studying traits at the molecular level. Most currently available transcriptome data for sugarcane were generated using second-generation sequencing platforms, which provide short reads. The de novo assembled transcripts from these data are limited in length, and hence may be incomplete and inaccurate, especially for long RNAs. Methods We generated a transcriptome dataset of leaf tissue from a commercial Thai sugarcane cultivar Khon Kaen 3 (KK3) using PacBio RS II single-molecule long-read sequencing by the Iso-Seq method. Short-read RNA-Seq data were generated from the same RNA sample using the Ion Proton platform for reducing base calling errors. Results A total of 119,339 error-corrected transcripts were generated with the N50 length of 3,611 bp, which is on average longer than any previously reported sugarcane transcriptome dataset. 110,253 sequences (92.4%) contain an open reading frame (ORF) of at least 300 bp long with ORF N50 of 1,416 bp. The mean lengths of 5′ and 3′ untranslated regions in 73,795 sequences with complete ORFs are 1,249 and 1,187 bp, respectively. 4,774 transcripts are putatively novel full-length transcripts which do not match with a previous Iso-Seq study of sugarcane. We annotated the functions of 68,962 putative full-length transcripts with at least 90% coverage when compared with homologous protein coding sequences in other plants. Discussion The new catalog of transcripts will be useful for genome annotation, identification of splicing variants, SNP identification, and other research pertaining to the sugarcane improvement program. The putatively novel transcripts suggest unique features of KK3, although more data from different tissues and stages of development are needed to establish a reference transcriptome of this cultivar

    The complete chloroplast genome sequence and phylogenetic analysis of Heritiera fomes Buch.-Ham. (Malvales: Sterculiaceae)

    No full text
    Heritiera fomes Buch.-Ham. (1800) is a species of mangrove in the family Malvaceae, widely distributed in the Indo-Pacific and listed as ‘endangered’ (EN) on the International Union for Conservation of Nature’s (IUCN) red list. We reported the complete chloroplast genome sequence of H. fomes. The genome was 168,521 bp in length and included two inverted repeats (IRs) of 34,496 bp, separated by a large single-copy (LSC) region of 88,604 bp and a small single-copy (SSC) region of 10,925 bp, respectively. The genome contained 87 protein-coding genes (PCGs), 8 rRNA genes, and 37 tRNA genes. The maximum-likelihood (ML) phylogenetic tree suggested that H. fomes is closely related to Heritiera angustata and Heritiera parvifolia with relatively high support bootstrap values of 86% and 100% with other species (Heritiera littoralis and Heritiera javanica), suggesting a relatively close genetic relationship between the five Heritiera plants. The chloroplast genome sequence provided a useful resource for conservation genetics studies of H. fomes and for phylogenetic studies of Heritiera

    A Chromosome-Scale Genome Assembly of Mitragyna speciosa (Kratom) and the Assessment of Its Genetic Diversity in Thailand

    No full text
    Mitragyna speciosa (Kratom) is a tropical narcotic plant native to Southeast Asia with unique pharmacological properties. Here, we report the first chromosome-scale assembly of the M. speciosa genome. We employed PacBio sequencing to obtain a preliminary assembly, which was subsequently scaffolded using the chromatin contact mapping technique (Hi-C) into 22 pseudomolecules. The final assembly was 692 Mb with a scaffold N50 of 26 Mb. We annotated a total of 39,708 protein-coding genes, and our gene predictions recovered 98.4% of the highly conserved orthologs based on the BUSCO analysis. The phylogenetic analysis revealed that M. speciosa diverged from the last common ancestors of Coffea arabica and Coffea canephora approximately 47.6 million years ago. Our analysis of the sequence divergence at fourfold-degenerate sites from orthologous gene pairs provided evidence supporting a genome-wide duplication in M. speciosa, agreeing with the report that members of the genus Mitragyna are tetraploid. The STRUCTURE and principal component analyses demonstrated that the 85 M. speciosa accessions included in this study were an admixture of two subpopulations. The availability of our high-quality chromosome-level genome assembly and the transcriptomic resources will be useful for future studies on the alkaloid biosynthesis pathway, as well as comparative phylogenetic studies in Mitragyna and related species

    Transcriptome analyses reveal the synergistic effects of feeding and eyestalk ablation on ovarian maturation in black tiger shrimp

    No full text
    Abstract Unilateral eyestalk ablation in the female black tiger shrimp Penaeus monodon is commonly employed to induce ovarian maturation. However, the importance of complementing this practice with the provision of live feed supplement (such as polychaetes) has not been emphasized in previous studies. Indeed, it has been less emphasized that female broodstock must be fed with live feeds such as polychaetes for this practice to be effective. While the effects of eyestalk ablation have been thoroughly studied in various aspects, the synergistic effects of feeding with live feeds and the ablation have never been elucidated at a transcriptome-wide level. With recent advances in the next-generation sequencing platforms, it is now possible to investigate the effects of eyestalk ablation and live feeds at the transcriptomic levels. This study employed both short-read Illumina RNA sequencing and long-read Pacific Biosciences (PacBio) isoform sequencing (Iso-seq) to generate the first high-quality ovarian reference transcriptome in P. monodon. This novel assembly allowed us to dissect the effects of feeds and eyestalk ablation and reveal their synergistic effects at the transcriptomic level through the regulation of important genes involved in fatty acid regulation, energy production, and hormone-mediated oocyte maturation pathways. The synergistic effects between the polychaete feeding and the eyestalk ablation in the process of ovarian maturation in black tiger shrimp suggest that without having proper nutrients from the polychaetes, female broodstock might not be ready to develop its ovary. However, even with proper nutrients, the eyestalk ablation is still necessary to perhaps manipulate the female endocrine of the black tiger shrimp. These findings shed the light on molecular mechanisms and key molecular pathways that lead to successful ovarian maturation

    Comparative Analysis and Phylogenetic Relationships of Ceriops Species (Rhizophoraceae) and Avicennia lanata (Acanthaceae): Insight into the Chloroplast Genome Evolution between Middle and Seaward Zones of Mangrove Forests

    No full text
    Ceriops and Avicennia are true mangroves in the middle and seaward zones of mangrove forests, respectively. The chloroplast genomes of Ceriops decandra, Ceriops zippeliana, and Ceriops tagal were assembled into lengths of 166,650, 166,083 and 164,432 bp, respectively, whereas Avicennia lanata was 148,264 bp in length. The gene content and gene order are highly conserved among these species. The chloroplast genome contains 125 genes in A. lanata and 129 genes in Ceriops species. Three duplicate genes (rpl2, rpl23, and trnM-CAU) were found in the IR regions of the three Ceriops species, resulting in expansion of the IR regions. The rpl32 gene was lost in C. zippeliana, whereas the infA gene was present in A. lanata. Short repeats (<40 bp) and a lower number of SSRs were found in A. lanata but not in Ceriops species. The phylogenetic analysis supports that all Ceriops species are clustered in Rhizophoraceae and A. lanata is in Acanthaceae. In a search for genes under selective pressures of coastal environments, the rps7 gene was under positive selection compared with non-mangrove species. Finally, two specific primer sets were developed for species identification of the three Ceriops species. Thus, this finding provides insightful genetic information for evolutionary relationships and molecular markers in Ceriops and Avicennia species

    The Genome and Transcriptome Analysis of the Vigna mungo Chloroplast

    No full text
    Vigna mungo is cultivated in approximately 5 million hectares worldwide. The chloroplast genome of this species has not been previously reported. In this study, we sequenced the genome and transcriptome of the V. mungo chloroplast. We identified many positively selected genes in the photosynthetic pathway (e.g., rbcL, ndhF, and atpF) and RNA polymerase genes (e.g., rpoC2) from the comparison of the chloroplast genome of V. mungo, temperate legume species, and tropical legume species. Our transcriptome data from PacBio isoform sequencing showed that the 51-kb DNA inversion could affect the transcriptional regulation of accD polycistronic. Using Illumina deep RNA sequencing, we found RNA editing of clpP in the leaf, shoot, flower, fruit, and root tissues of V. mungo. We also found three G-to-A RNA editing events that change guanine to adenine in the transcripts transcribed from the adenine-rich regions of the ycf4 gene. The edited guanine bases were found particularly in the chloroplast genome of the Vigna species. These G-to-A RNA editing events were likely to provide a mechanism for correcting DNA base mutations. The V. mungo chloroplast genome sequence and the analysis results obtained in this study can apply to phylogenetic studies and chloroplast genome engineering

    The complete mitochondrial genome of Luffa acutangula

    No full text
    Based on PacBio de novo assembly, we report the first complete mitochondrial genome of Luffa acutangula (460,333 bp) containing nine large chloroplast-derived sequences (1.9–17.3 kb) across the mitogenome. The base composition of the mitogenome in descending order is A: 28.02%, C: 22.04%, G: 21.83% and T: 28.10%, and the G + C content is 43.87%. There are 63 mitochondrial genes including 40 protein-coding genes, 3 rRNA genes and 20 tRNA genes. Additionally, a total of 288 repeats ranging from 31 to 5,301 bp were identified, accounting for 5.7% of the mitogenome. Two large direct repeats (5,301 and 405 bp) within the mitogenome were found for the formation of four subgenomic molecules. A phylogenetic analysis showed that L. acutangula was closely related to other species in Cucurbiaceae. This mitogenome provides useful genetic information for evolutionary studies
    corecore