23 research outputs found

    Seismic hazard assessment – a holistic microzonation approach

    No full text
    The probable mitigation and management issues of seismic hazard necessitate seismic microzonation for hazard and risk assessment at the local level. Such studies are preceded with those at a regional level. A comprehensive framework, therefore, encompasses several phases from information compilations and data recording to analyses and interpretations. The state-of-the-art methodologies involve multi-disciplinary approaches namely geological, seismological, and geotechnical methods delivering multiple perspectives on the prevailing hazard in terms of geology and geomorphology, strong ground motion, site amplification, site classifications, soil liquefaction potential, landslide susceptibility, and predominant frequency. The composite hazard is assessed accounting for all the potential hazard attributing features with relative rankings in a logic tree, fuzzy set or hierarchical concept

    The Earthquake‐Source Inversion Validation (SIV) Project

    No full text
    Finite‐fault earthquake source inversions infer the (time‐dependent) displacement on the rupture surface from geophysical data. The resulting earthquake source models document the complexity of the rupture process. However, multiple source models for the same earthquake, obtained by different research teams, often exhibit remarkable dissimilarities. To address the uncertainties in earthquake‐source inversion methods and to understand strengths and weaknesses of the various approaches used, the Source Inversion Validation (SIV) project conducts a set of forward‐modeling exercises and inversion benchmarks. In this article, we describe the SIV strategy, the initial benchmarks, and current SIV results. Furthermore, we apply statistical tools for quantitative waveform comparison and for investigating source‐model (dis)similarities that enable us to rank the solutions, and to identify particularly promising source inversion approaches. All SIV exercises (with related data and descriptions) and statistical comparison tools are available via an online collaboration platform, and we encourage source modelers to use the SIV benchmarks for developing and testing new methods. We envision that the SIV efforts will lead to new developments for tackling the earthquake‐source imaging problem

    Spatial variation of seismicity parameters across India and adjoining areas

    No full text
    An attempt has been made to quantify the variability in the seismic activity rate across the whole of India and adjoining areas (0-45N and 60-105E) using earthquake database compiled from various sources. Both historical and instrumental data were compiled and the complete catalog of Indian earthquakes till 2010 has been prepared. Region-specific earthquake magnitude scaling relations correlating different magnitude scales were achieved to develop a homogenous earthquake catalog for the region in unified moment magnitude scale. The dependent events (75.3%) in the raw catalog have been removed and the effect of aftershocks on the variation of b value has been quantified. The study area was divided into 2,025 grid points (191) and the spatial variation of the seismicity across the region have been analyzed considering all the events within 300 km radius from each grid point. A significant decrease in seismic b value was seen when declustered catalog was used which illustrates that a larger proportion of dependent events in the earthquake catalog are related to lower magnitude events. A list of 203,448 earthquakes (including aftershocks and foreshocks) occurred in the region covering the period from 250 B.C. to 2010 A.D. with all available details is uploaded in the websit
    corecore