14 research outputs found

    Real-Time Hand Gesture Recognition Using Temporal Muscle Activation Maps of Multi-Channel sEMG Signals

    Full text link
    Accurate and real-time hand gesture recognition is essential for controlling advanced hand prostheses. Surface Electromyography (sEMG) signals obtained from the forearm are widely used for this purpose. Here, we introduce a novel hand gesture representation called Temporal Muscle Activation (TMA) maps which captures information about the activation patterns of muscles in the forearm. Based on these maps, we propose an algorithm that can recognize hand gestures in real-time using a Convolution Neural Network. The algorithm was tested on 8 healthy subjects with sEMG signals acquired from 8 electrodes placed along the circumference of the forearm. The average classification accuracy of the proposed method was 94%, which is comparable to state-of-the-art methods. The average computation time of a prediction was 5.5ms, making the algorithm ideal for the real-time gesture recognition applications.Comment: Paper accepted to IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 202

    Face Mediated Human-Robot Interaction for Remote Medical Examination: Associated Data and Code

    No full text
    Repository for experiment data and code

    Adaptive Foot in Lower-Limb Prostheses

    No full text
    The human foot consists of complex sets of joints. The adaptive nature of the human foot enables it to be stable on any uneven surface. It is important to have such adaptive capabilities in the artificial prosthesis to achieve most of the essential movements for lower-limb amputees. However, many existing lower-limb prostheses lack the adaptive nature. This paper reviews lower-limb adaptive foot prostheses. In order to understand the design concepts of adaptive foot prostheses, the biomechanics of human foot have been explained. Additionally, the requirements and design challenges are investigated and presented. In this review, adaptive foot prostheses are classified according to actuation method. Furthermore, merits and demerits of present-day adaptive foot prostheses are presented based on the hardware construction. The hardware configurations of recent adaptive foot prostheses are analyzed and compared. At the end, potential future developments are highlighted

    Differences in pain inference from animated facial expressions based on observers’ individual characteristics

    No full text
    Supporting materials for "Differences in pain inference from animated facial expressions based on observers’ individual characteristics
    corecore