8 research outputs found

    Alternative Oxidase (AOX) Senses Stress Levels to Coordinate Auxin-Induced Reprogramming From Seed Germination to Somatic Embryogenesis—A Role Relevant for Seed Vigor Prediction and Plant Robustness

    Get PDF
    Somatic embryogenesis (SE) is the most striking and prominent example of plant plasticity upon severe stress. Inducing immature carrot seeds perform SE as substitute to germination by auxin treatment can be seen as switch between stress levels associated to morphophysiological plasticity. This experimental system is highly powerful to explore stress response factors that mediate the metabolic switch between cell and tissue identities. Developmental plasticity per se is an emerging trait for in vitro systems and crop improvement. It is supposed to underlie multi-stress tolerance. High plasticity can protect plants throughout life cycles against variable abiotic and biotic conditions. We provide proof of concepts for the existing hypothesis that alternative oxidase (AOX) can be relevant for developmental plasticity and be associated to yield stability. Our perspective on AOX as relevant coordinator of cell reprogramming is supported by real-time polymerase chain reaction (PCR) analyses and gross metabolism data from calorespirometry complemented by SHAM-inhibitor studies on primed, elevated partial pressure of oxygen (EPPO)–stressed, and endophyte-treated seeds. In silico studies on public experimental data from diverse species strengthen generality of our insights. Finally, we highlight readyto- use concepts for plant selection and optimizing in vivo and in vitro propagation that do not require further details on molecular physiology and metabolism. This is demonstrated by applying our research & technology concepts to pea genotypes with differential yield performance in multilocation fields and chickpea types known for differential robustness in the field. By using these concepts and tools appropriately, also other marker candidates than AOX and complex genomics data can be efficiently validated for prebreeding and seed vigor prediction

    Alternative Oxidase (AOX) Senses Stress Levels to Coordinate Auxin-Induced Reprogramming From Seed Germination to Somatic Embryogenesis—A Role Relevant for Seed Vigor Prediction and Plant Robustness

    Get PDF
    Somatic embryogenesis (SE) is the most striking and prominent example of plant plasticity upon severe stress. Inducing immature carrot seeds perform SE as substitute to germination by auxin treatment can be seen as switch between stress levels associated to morphophysiological plasticity. This experimental system is highly powerful to explore stress response factors that mediate the metabolic switch between cell and tissue identities. Developmental plasticity per se is an emerging trait for in vitro systems and crop improvement. It is supposed to underlie multi-stress tolerance. High plasticity can protect plants throughout life cycles against variable abiotic and biotic conditions. We provide proof of concepts for the existing hypothesis that alternative oxidase (AOX) can be relevant for developmental plasticity and be associated to yield stability. Our perspective on AOX as relevant coordinator of cell reprogramming is supported by real-time polymerase chain reaction (PCR) analyses and gross metabolism data from calorespirometry complemented by SHAM-inhibitor studies on primed, elevated partial pressure of oxygen (EPPO)–stressed, and endophyte-treated seeds. In silico studies on public experimental data from diverse species strengthen generality of our insights. Finally, we highlight ready-to-use concepts for plant selection and optimizing in vivo and in vitro propagation that do not require further details on molecular physiology and metabolism. This is demonstrated by applying our research & technology concepts to pea genotypes with differential yield performance in multilocation fields and chickpea types known for differential robustness in the field. By using these concepts and tools appropriately, also other marker candidates than AOX and complex genomics data can be efficiently validated for prebreeding and seed vigor prediction.</p

    Foraging zones of the two sibling species of giant petrels in the Indian Ocean throughout the annual cycle: implication for their conservation

    Get PDF
    We studied the year-round distribution and at-sea activity patterns of the sibling species, northern giant petrel Macronectes halli and southern giant petrel M. giganteus. Loggers combining light-based geolocators and immersion sensors were used to provide year-long data on large-scale distribution and activity of both species from the Crozet Islands (46°25’S, 51°51’E) and northern giant petrels from the Kerguelen Islands (49°19’S, 69°15’E) in the southern Indian Ocean. Argos platform transmitter terminals (PTTs) were used to track fine-scale movements of breeding adults and juveniles. Overall, adults remained within the Indian Ocean during and outside the breeding season, whereas juveniles dispersed throughout the Southern Ocean. In accordance with previous studies, differences in adult distribution and behaviour were greater between sexes than species: females dispersed more widely than males and also spent more time sitting on the water, particularly during the winter. Observed differences in distribution have important conservation implications: adults, especially males, overlap to a large extent with longline fisheries for Patagonian toothfish Dissostichus eleginoides in shelf areas within national Exclusive Economic Zones (EEZs), whereas adult females and juveniles are more likely to encounter high-sea longline fleets targeting tuna in subtropical waters. The circumpolar wide ranging behavior of naïve juvenile birds makes them particularly susceptible to interaction with a wide range of longline fisheries

    Transcriptome Analyses in a Selected Gene Set Indicate Alternative Oxidase (AOX) and Early Enhanced Fermentation as Critical for Salinity Tolerance in Rice

    No full text
    Plants subjected to stress need to respond rapidly and efficiently to acclimatize and survive. In this paper, we investigated a selected gene set potentially involved in early cell reprogramming in two rice genotypes with contrasting salinity tolerance (Pokkali tolerant and IR29 susceptible) in order to advance knowledge of early molecular mechanisms of rice in dealing with salt stress. Selected genes were evaluated in available transcriptomic data over a short period of 24 h and involved enzymes that avoid ROS formation (AOX, UCP and PTOX), impact ATP production (PFK, ADH and COX) or relate to the antioxidant system. Higher transcript accumulation of AOX (ROS balancing), PFK and ADH (alcohol fermentation) was detected in the tolerant genotype, while the sensitive genotype revealed higher UCP and PTOX transcript levels, indicating a predominant role for early transcription of AOX and fermentation in conferring salt stress tolerance to rice. Antioxidant gene analyses supported higher oxidative stress in IR29, with transcript increases of cytosolic CAT and SOD from all cell compartments (cytoplasm, peroxisome, chloroplast and mitochondria). In contrast, Pokkali increased mRNA levels from the AsA-GSH cycle as cytosolic/mitochondrial DHAR was involved in ascorbate recovery. In addition, these responses occurred from 2 h in IR29 and 10 h in Pokkali, indicating early but ineffective antioxidant activity in the susceptible genotype. Overall, our data suggest that AOX and ADH can play a critical role during early cell reprogramming for improving salt stress tolerance by efficiently controlling ROS formation in mitochondria. We discuss our results in relation to gene engineering and editing approaches to develop salinity-tolerant crops

    Adaptive Reprogramming During Early Seed Germination Requires Temporarily Enhanced Fermentation-A Critical Role for Alternative Oxidase Regulation That Concerns Also Microbiota Effectiveness

    Get PDF
    Plants respond to environmental cues via adaptive cell reprogramming that can affect whole plant and ecosystem functionality. Microbiota constitutes part of the inner and outer environment of the plant. This Umwelt underlies steady dynamics, due to complex local and global biotic and abiotic changes. Hence, adaptive plant holobiont responses are crucial for continuous metabolic adjustment at the systems level. Plants require oxygen-dependent respiration for energy-dependent adaptive morphology, such as germination, root and shoot growth, and formation of adventitious, clonal, and reproductive organs, fruits, and seeds. Fermentative paths can help in acclimation and, to our view, the role of alternative oxidase (AOX) in coordinating complex metabolic and physiological adjustments is underestimated. Cellular levels of sucrose are an important sensor of environmental stress. We explored the role of exogenous sucrose and its interplay with AOX during early seed germination. We found that sucrose-dependent initiation of fermentation during the first 12 h after imbibition (HAI) was beneficial to germination. However, parallel upregulated AOX expression was essential to control negative effects by prolonged sucrose treatment. Early downregulated AOX activity until 12 HAI improved germination efficiency in the absence of sucrose but suppressed early germination in its presence. The results also suggest that seeds inoculated with arbuscular mycorrhizal fungi (AMF) can buffer sucrose stress during germination to restore normal respiration more efficiently. Following this approach, we propose a simple method to identify organic seeds and low-cost on-farm perspectives for early identifying disease tolerance, predicting plant holobiont behavior, and improving germination. Furthermore, the research strengthens the view that AOX can serve as a powerful functional marker source for seed hologenomes

    From plant survival under severe stress to anti-viral human defense - a perspective that calls for common efforts

    No full text
    Reprogramming of primary virus-infected cells is the critical step that turns viral attacks harmful to humans by initiating super-spreading at cell, organism and population levels. To develop early anti-viral therapies and proactive administration, it is important to understand the very first steps of this process. Plant somatic embryogenesis (SE) is the earliest and most studied model for de novo programming upon severe stress that, in contrast to virus attacks, promotes individual cell and organism survival. We argued that transcript level profiles of target genes established from in vitro SE induction as reference compared to virus-induced profiles can identify differential virus traits that link to harmful reprogramming. To validate this hypothesis, we selected a standard set of genes named ‘ReprogVirus’. This approach was recently applied and published. It resulted in identifying ‘CoV-MAC-TED’, a complex trait that is promising to support combating SARS-CoV-2-induced cell reprogramming in primary infected nose and mouth cells. In this perspective, we aim to explain the rationale of our scientific approach. We are highlighting relevant background knowledge on SE, emphasize the role of alternative oxidase in plant reprogramming and resilience as a learning tool for designing human virus-defense strategies and, present the list of selected genes. As an outlook, we announce wider data collection in a ‘ReprogVirus Platform’ to support anti-viral strategy design through common efforts
    corecore