32 research outputs found
Stress-Induced Sphingolipid Signaling: Role of Type-2 Neutral Sphingomyelinase in Murine Cell Apoptosis and Proliferation
International audienceBACKGROUND: Sphingomyelin hydrolysis in response to stress-inducing agents, and subsequent ceramide generation, are implicated in various cellular responses, including apoptosis, inflammation and proliferation, depending on the nature of the different acidic or neutral sphingomyelinases. This study was carried out to investigate whether the neutral Mg(2+)-dependent neutral sphingomyelinase-2 (nSMase2) plays a role in the cellular signaling evoked by TNFalpha and oxidized LDLs, two stress-inducing agents, which are mitogenic at low concentrations and proapoptotic at higher concentrations. METHODOLOGY AND PRINCIPAL FINDINGS: For this purpose, we used nSMase2-deficient cells from homozygous fro/fro (fragilitas ossium) mice and nSMase2-deficient cells reconstituted with a V5-tagged nSMase2. We report that the genetic defect of nSMase2 (in fibroblasts from fro/fro mice) does not alter the TNFalpha and oxidized LDLs-mediated apoptotic response. Likewise, the hepatic toxicity of TNFalpha is similar in wild type and fro mice, thus is independent of nSMase2 activation. In contrast, the mitogenic response elicited by low concentrations of TNFalpha and oxidized LDLs (but not fetal calf serum) requires nSMase2 activation. CONCLUSION AND SIGNIFICANCE: nSMase2 activation is not involved in apoptosis mediated by TNFalpha and oxidized LDLs in murine fibroblasts, and in the hepatotoxicity of TNFalpha in mice, but is required for the mitogenic response to stress-inducing agents
Lipid-Induced Peroxidation in the Intestine Is Involved in Glucose Homeostasis Imbalance in Mice
BACKGROUND: Daily variations in lipid concentrations in both gut lumen and blood are detected by specific sensors located in the gastrointestinal tract and in specialized central areas. Deregulation of the lipid sensors could be partly involved in the dysfunction of glucose homeostasis. The study aimed at comparing the effect of Medialipid (ML) overload on insulin secretion and sensitivity when administered either through the intestine or the carotid artery in mice. METHODOLOGY/PRINCIPAL FINDINGS: An indwelling intragastric or intracarotid catheter was installed in mice and ML or an isocaloric solution was infused over 24 hours. Glucose and insulin tolerance and vagus nerve activity were assessed. Some mice were treated daily for one week with the anti-lipid peroxidation agent aminoguanidine prior to the infusions and tests. The intestinal but not the intracarotid infusion of ML led to glucose and insulin intolerance when compared with controls. The intestinal ML overload induced lipid accumulation and increased lipid peroxidation as assessed by increased malondialdehyde production within both jejunum and duodenum. These effects were associated with the concomitant deregulation of vagus nerve. Administration of aminoguanidine protected against the effects of lipid overload and normalized glucose homeostasis and vagus nerve activity. CONCLUSIONS/SIGNIFICANCE: Lipid overload within the intestine led to deregulation of gastrointestinal lipid sensing that in turn impaired glucose homeostasis through changes in autonomic nervous system activity
Caveolin-1 sensitizes vascular smooth muscle cells to mildly oxidized LDL-induced apoptosis
Oxidized low-density lipoprotein (oxLDL)-induced apoptosis of vascular cells may participate to plaque instability and rupture. Caveolin-1 has emerged as an important regulator of several signal transduction pathways and processes that play a role in atherosclerosis. In this study we examined the potential role of caveolin-1 in the regulation of oxLDL-induced Ca(2+) signaling and apoptosis in vascular smooth muscle cells (VSMC). Cells expressing caveolin-1 were more susceptible to oxLDL-induced apoptosis, and this was correlated with enhanced Ca(2+) entry and pro-apoptotic events. Moreover, caveolin-1 silencing by small interfering RNA decreased the level of apoptotic cells after oxLDL treatment. These findings provide new insights about the potential role of caveolin-1 in the regulation of oxLDL-induced apoptosis in vascular cells and its contribution to the instability of the plaque
Alteration of plasmalemmal caveolae mimics endothelial dysfunction observed in atheromatous rabbit aorta.
OBJECTIVE: In endothelial cells, nitric oxide (NO) is produced by the endothelial isoform of nitric oxide synthase (eNOS), which is localized in the cholesterol-rich plasmalemmal microdomains involved in signal transduction, known as caveolae. The present study was undertaken to evaluate the effect of hypercholesterolemia and fatty streak formation on the endothelial caveolae and on endothelial function, and attempted to determine to what extent the caveolae were involved in endothelium-derived NO production. METHODS AND RESULTS: We first studied the effect of atheroma on endothelial NO production. Fatty streak infiltrated aorta of cholesterol-fed New Zealand White rabbits demonstrated an impairment of acetylcholine-induced relaxation and nearly normal calcium ionophore A23187-induced maximal relaxation. The abundance of caveolae in the endothelium covering the fatty streak, as well as their 'grape-like' clustering, appeared to be decreased. We therefore investigated the effect, on endothelial NO production, of the cholesterol-binding agents 2-hydroxypropyl-beta-cyclodextrin (hp-beta-CD) and filipin, known to alter caveolae structure and/or function. Treatment with either hp-beta-CD (2%) or filipin (4 microg/ml) did not affect contraction to phenylephrine or relaxant responses to A23187 or to the NO donor sodium nitroprusside. In contrast, both treatments impaired acetylcholine-induced relaxation. Cultured bovine aortic endothelial cells (BAEC) similarly treated with hp-beta-CD demonstrated a 50% decrease of total cellular cholesterol and a decreased abundance of caveolae as well as their 'grape-like' clustering. Cholesterol depletion decreased the bradykinin-induced transient peak of free intracellular calcium and subsequent receptor-stimulated NO production (assessed using reporter cells rich in soluble guanylyl cyclase), whereas that elicited by A23187 remained unaltered. CONCLUSION: Fatty streak deposit is associated with a decrease in caveolae 'transductosomes' abundance which appears to represent a novel mechanism of endothelial dysfunction
Integrin alpha(v)beta(3), metalloproteinases, and sphingomyelinase-2 mediate urokinase mitogenic effect.
International audiencePlasminogen activators are implicated in the pathogenesis of several diseases such as inflammatory diseases and cancer. Beside their serine-protease activity, these agents trigger signaling pathways involved in cell migration, adhesion and proliferation. We previously reported a role for the sphingolipid pathway in the mitogenic effect of plasminogen activators, but the signaling mechanisms involved in neutral sphingomyelinase-2 (NSMase-2) activation (the first step of the sphingolipid pathway) are poorly known. This study was carried out to investigate how urokinase plasminogen activator (uPA) activates NSMase-2. We report that uPA, as well as its catalytically inactive N-amino fragment ATF, triggers the sequential activation of MMP-2, NSMase-2 and ERK1/2 in ECV304 cells that are required for uPA-induced ECV304 proliferation, as assessed by the inhibitory effect of Marimastat (a MMP inhibitor), MMP-2-specific siRNA, MMP-2 defect, and NSMase-specific siRNA. Moreover, upon uPA stimulation, uPAR, MT1-MMP, MMP-2 and NSMase-2 interacted with integrin alpha(v)beta(3), evidenced by co-immunoprecipitation and immunocytochemistry experiments. Moreover, the alpha(v)beta(3) blocking antibody inhibited the uPA-triggered MMPs/uPAR/integrin alpha(v)beta(3) interaction, NSMase-2 activation, Ki67 expression and DNA synthesis in ECV304. In conclusion, uPA triggers interaction between integrin alpha(v)beta(3), uPAR and MMPs that leads to NSMase-2 and ERK1/2 activation and cell proliferation. These findings highlight a new signaling mechanism for uPA, and suggest that, upon uPA stimulation, uPAR, MMPs, integrin alpha(v)beta(3) and NSMase-2 form a signaling complex that take part in mitogenic signaling in ECV304 cells