75 research outputs found
Synthesis and Structural Diversity of Group 4 Metal Complexes with Multidentate Tethered Phenoxy-Amidine and Phenoxy-Amidinate Ligands
The coordination chemistry of the multidentate tethered
amidine-phenol
{4,6-<i>t</i>Bu<sub>2</sub>C<sub>6</sub>H<sub>2</sub>OÂ(2-CÂ(NR)î»NR}ÂH<sub>2</sub> ({LON<sup>R</sup>}ÂH<sub>2</sub>, R = <i>i</i>Pr,
2,6-<i>i</i>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (Ar))
and new guanidine-phenol {4,6-<i>t</i>Bu<sub>2</sub>C<sub>6</sub>H<sub>2</sub>ONÂ(C<sub>6</sub>H<sub>5</sub>)Â(2-CÂ(NR)î»NR}ÂH<sub>2</sub> ({LONÂ(Ph)ÂN<sup><i>i</i>Pr</sup>}ÂH<sub>2</sub>)
pro-ligands with group 4 metals has been studied. Ï-Bond and
salt metathesis reactions were explored to coordinate these (pro)Âligands
onto zirconium and hafnium. Alkane elimination reactions between {LON<sup>R</sup>}ÂH<sub>2</sub> and ZrÂ(CH<sub>2</sub>Ph)<sub>4</sub> afforded
mixed-ligand monobenzyl {LO<sup>H</sup>N<sup>R</sup>}Â{LON<sup>R</sup>}ÂZrÂ(CH<sub>2</sub>Ph) (R = <i>i</i>Pr; <b>1</b>)
and monoligand tribenzyl {LO<sup>H</sup>N<sup>Ar</sup>}ÂZrÂ(CH<sub>2</sub>Ph)<sub>3</sub> (R = Ar; <b>2</b>) complexes, respectively.
Alkane and amine elimination reactions between {LONÂ(Ph)ÂN<sup><i>i</i>Pr</sup>}ÂH<sub>2</sub> and ZrÂ(CH<sub>2</sub>Ph)<sub>4</sub> or HfÂ(NMe<sub>2</sub>)<sub>4</sub> unexpectedly resulted in cleavage
of the ligand backbone and eventual isolation of {(Ph)ÂNC<sub>6</sub>H<sub>2</sub>(<i>t</i>Bu)<sub>2</sub>O}ÂZrÂ{(<i>i</i>PrN)<sub>2</sub>CCH<sub>2</sub>Ph}<sub>2</sub> (<b>3</b>) and
{(Ph)ÂNC<sub>6</sub>H<sub>2</sub>(<i>t</i>Bu)<sub>2</sub>O}ÂHfÂ{(<i>i</i>PrN)<sub>2</sub>CNMe<sub>2</sub>}<sub>2</sub> (<b>4</b>), respectively. Salt metathesis reactions between
{LON<sup>R</sup>}ÂLi<sub>2</sub> and ZrCl<sub>4</sub>(THF)<sub><i>n</i></sub> (<i>n</i> = 0, 2), conducted in 1:1 ratios,
led upon crystallization to diverse chloro complexes: [{LON<sup><i>i</i>Pr</sup>}ÂZrCl]<sub>3</sub>(ÎŒ<sub>3</sub>-O)Â(ÎŒ<sub>3</sub>-Cl) (<b>5</b>), [{LON<sup>Ar</sup>}<sub>2</sub>ZrClÂ(ÎŒ<sub>2</sub>-Cl)]<sub>2</sub>[{L<sup>H</sup>ON<sup>Ar</sup>}ÂZrClÂ(ÎŒ<sub>2</sub>-Cl)]Â(ÎŒ<sub>3</sub>âOH) (<b>6</b>), and
{LO<sup>H</sup>N<sup>Ar</sup>}ÂZrCl<sub>3</sub>(THF) (<b>7</b>). Similar salt metathesis reactions between the monolithium salts
{L<sup>H</sup>ON<sup>R</sup>}Li and ZrCl<sub>4</sub>, conducted in
2:1 ratios, allowed the selective preparation of bisÂ(phenoxy-amidine)
complexes with pendant amino groups {LO<sup>H</sup>N<sup>R</sup>}<sub>2</sub>ZrCl<sub>2</sub> (R = <i>i</i>Pr, <b>8</b>; R = Ar, <b>9</b>). All complexes were authenticated by elemental
analysis, X-ray crystallography, and NMR spectroscopy. Complexes <b>5</b>, <b>6</b>, <b>8</b>, and <b>9</b>, upon
activation with MAO, showed poor to moderate productivities (4â172
(kg of PE) mol<sup>â1</sup> h<sup>â1</sup>) in the polymerization
of ethylene, giving linear polymers with large polydispersities
Aluminum Complexes of Bidentate Fluorinated Alkoxy-Imino Ligands: Syntheses, Structures, and Use in Ring-Opening Polymerization of Cyclic Esters
The coordination chemistry of bidentate fluorinated alkoxy-imino
ligands onto AlÂ(III) centers has been studied. The proligands (CF<sub>3</sub>)<sub>2</sub>CÂ(OH)ÂCH<sub>2</sub>CÂ(R<sup>1</sup>)î»NâR<sup>2</sup> ({ON<sup>R1,R2</sup>}ÂH; R<sup>1</sup> = Me, Ph; R<sup>2</sup> = Ph, CH<sub>2</sub>Ph, cyclohexyl; <b>1a</b>â<b>d</b>) react selectively with AlMe<sub>3</sub> (0.5 or 1.0 equiv)
and AlMe<sub>2</sub>(O<i>i</i>Pr) or AlÂ(O<i>i</i>Pr)<sub>3</sub> (0.5 equiv) to give the corresponding monoligand
compounds {ON<sup>R1,R2</sup>}ÂAlMe<sub>2</sub> (<b>2a</b>â<b>d</b>) and the bis-ligand compounds {ON<sup>R1,R2</sup>}<sub>2</sub>AlMe (<b>3a</b>â<b>d</b>) and {ON<sup>R1,R2</sup>}<sub>2</sub>AlÂ(O<i>i</i>Pr) (<b>4a</b>â<b>c</b>). X-ray diffraction studies revealed that {ON<sup>Ph,Bn</sup>}ÂAlMe<sub>2</sub> (<b>2a</b>), {ON<sup>Me,Bn</sup>}ÂAlMe<sub>2</sub> (<b>2b</b>), {ON<sup>Me,Bn</sup>}<sub>2</sub>AlMe (<b>3b</b>), {ON<sup>Ph,Ph</sup>}<sub>2</sub>AlMe (<b>3c</b>), {ON<sup>Me,Bn</sup>}<sub>2</sub>AlÂ(O<i>i</i>Pr) (<b>4b</b>), and {ON<sup>Ph,Ph</sup>}<sub>2</sub>AlÂ(O<i>i</i>Pr) (<b>4c</b>) all adopt a mononuclear structure in the solid
state; four-coordinate {ON<sup>R1,R2</sup>}ÂAlMe<sub>2</sub> and five-coordinate
{ON<sup>Me,Bn</sup>}<sub>2</sub>AlÂ(O<i>i</i>Pr) feature
respectively distorted-tetrahedral and trigonal-bipyramidal geometries.
The <sup>1</sup>H, <sup>13</sup>CÂ{<sup>1</sup>H}, and <sup>19</sup>FÂ{<sup>1</sup>H} NMR data indicate that the structures observed in
the solid state are retained in CD<sub>2</sub>Cl<sub>2</sub> or C<sub>6</sub>D<sub>6</sub> solution at room temperature. The binary systems
{ON<sup>R1,R2</sup>}ÂAlMe<sub>2</sub> (<b>2</b>)/BnOH and discrete
{ON<sup>R1,R2</sup>}<sub>2</sub>AlÂ(O<i>i</i>Pr) (<b>4</b>) are effective catalysts for the controlled ROP of Δ-caprolactone
and <i>rac</i>-lactide, both in bulk molten monomer and
in toluene solution/slurry. In contrast to the case for {ON<sup>R</sup>NO}ÂAlÂ(O<i>i</i>Pr), having a bridged tetradentate fluorinated
dialkoxy-diimino ligand that provides isotactic-enriched polylactides,
the unbridged compounds {ON<sup>R1,R2</sup>}<sub>2</sub>AlÂ(O<i>i</i>Pr) (<b>4</b>) produce atactic PLAs. The key element
which appears to be at the origin of the absence of stereocontrol
is the lack of bridge between the two imino-alkoxy moieties, possibly
via a decrease in the rigidity of the compounds and/or a different
positioning of N,O vs N,N heteroatoms in axial sites
Synthesis and Structural Diversity of Group 4 Metal Complexes with Multidentate Tethered Phenoxy-Amidine and Phenoxy-Amidinate Ligands
The coordination chemistry of the multidentate tethered
amidine-phenol
{4,6-<i>t</i>Bu<sub>2</sub>C<sub>6</sub>H<sub>2</sub>OÂ(2-CÂ(NR)î»NR}ÂH<sub>2</sub> ({LON<sup>R</sup>}ÂH<sub>2</sub>, R = <i>i</i>Pr,
2,6-<i>i</i>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (Ar))
and new guanidine-phenol {4,6-<i>t</i>Bu<sub>2</sub>C<sub>6</sub>H<sub>2</sub>ONÂ(C<sub>6</sub>H<sub>5</sub>)Â(2-CÂ(NR)î»NR}ÂH<sub>2</sub> ({LONÂ(Ph)ÂN<sup><i>i</i>Pr</sup>}ÂH<sub>2</sub>)
pro-ligands with group 4 metals has been studied. Ï-Bond and
salt metathesis reactions were explored to coordinate these (pro)Âligands
onto zirconium and hafnium. Alkane elimination reactions between {LON<sup>R</sup>}ÂH<sub>2</sub> and ZrÂ(CH<sub>2</sub>Ph)<sub>4</sub> afforded
mixed-ligand monobenzyl {LO<sup>H</sup>N<sup>R</sup>}Â{LON<sup>R</sup>}ÂZrÂ(CH<sub>2</sub>Ph) (R = <i>i</i>Pr; <b>1</b>)
and monoligand tribenzyl {LO<sup>H</sup>N<sup>Ar</sup>}ÂZrÂ(CH<sub>2</sub>Ph)<sub>3</sub> (R = Ar; <b>2</b>) complexes, respectively.
Alkane and amine elimination reactions between {LONÂ(Ph)ÂN<sup><i>i</i>Pr</sup>}ÂH<sub>2</sub> and ZrÂ(CH<sub>2</sub>Ph)<sub>4</sub> or HfÂ(NMe<sub>2</sub>)<sub>4</sub> unexpectedly resulted in cleavage
of the ligand backbone and eventual isolation of {(Ph)ÂNC<sub>6</sub>H<sub>2</sub>(<i>t</i>Bu)<sub>2</sub>O}ÂZrÂ{(<i>i</i>PrN)<sub>2</sub>CCH<sub>2</sub>Ph}<sub>2</sub> (<b>3</b>) and
{(Ph)ÂNC<sub>6</sub>H<sub>2</sub>(<i>t</i>Bu)<sub>2</sub>O}ÂHfÂ{(<i>i</i>PrN)<sub>2</sub>CNMe<sub>2</sub>}<sub>2</sub> (<b>4</b>), respectively. Salt metathesis reactions between
{LON<sup>R</sup>}ÂLi<sub>2</sub> and ZrCl<sub>4</sub>(THF)<sub><i>n</i></sub> (<i>n</i> = 0, 2), conducted in 1:1 ratios,
led upon crystallization to diverse chloro complexes: [{LON<sup><i>i</i>Pr</sup>}ÂZrCl]<sub>3</sub>(ÎŒ<sub>3</sub>-O)Â(ÎŒ<sub>3</sub>-Cl) (<b>5</b>), [{LON<sup>Ar</sup>}<sub>2</sub>ZrClÂ(ÎŒ<sub>2</sub>-Cl)]<sub>2</sub>[{L<sup>H</sup>ON<sup>Ar</sup>}ÂZrClÂ(ÎŒ<sub>2</sub>-Cl)]Â(ÎŒ<sub>3</sub>âOH) (<b>6</b>), and
{LO<sup>H</sup>N<sup>Ar</sup>}ÂZrCl<sub>3</sub>(THF) (<b>7</b>). Similar salt metathesis reactions between the monolithium salts
{L<sup>H</sup>ON<sup>R</sup>}Li and ZrCl<sub>4</sub>, conducted in
2:1 ratios, allowed the selective preparation of bisÂ(phenoxy-amidine)
complexes with pendant amino groups {LO<sup>H</sup>N<sup>R</sup>}<sub>2</sub>ZrCl<sub>2</sub> (R = <i>i</i>Pr, <b>8</b>; R = Ar, <b>9</b>). All complexes were authenticated by elemental
analysis, X-ray crystallography, and NMR spectroscopy. Complexes <b>5</b>, <b>6</b>, <b>8</b>, and <b>9</b>, upon
activation with MAO, showed poor to moderate productivities (4â172
(kg of PE) mol<sup>â1</sup> h<sup>â1</sup>) in the polymerization
of ethylene, giving linear polymers with large polydispersities
Aluminum Complexes of Bidentate Fluorinated Alkoxy-Imino Ligands: Syntheses, Structures, and Use in Ring-Opening Polymerization of Cyclic Esters
The coordination chemistry of bidentate fluorinated alkoxy-imino
ligands onto AlÂ(III) centers has been studied. The proligands (CF<sub>3</sub>)<sub>2</sub>CÂ(OH)ÂCH<sub>2</sub>CÂ(R<sup>1</sup>)î»NâR<sup>2</sup> ({ON<sup>R1,R2</sup>}ÂH; R<sup>1</sup> = Me, Ph; R<sup>2</sup> = Ph, CH<sub>2</sub>Ph, cyclohexyl; <b>1a</b>â<b>d</b>) react selectively with AlMe<sub>3</sub> (0.5 or 1.0 equiv)
and AlMe<sub>2</sub>(O<i>i</i>Pr) or AlÂ(O<i>i</i>Pr)<sub>3</sub> (0.5 equiv) to give the corresponding monoligand
compounds {ON<sup>R1,R2</sup>}ÂAlMe<sub>2</sub> (<b>2a</b>â<b>d</b>) and the bis-ligand compounds {ON<sup>R1,R2</sup>}<sub>2</sub>AlMe (<b>3a</b>â<b>d</b>) and {ON<sup>R1,R2</sup>}<sub>2</sub>AlÂ(O<i>i</i>Pr) (<b>4a</b>â<b>c</b>). X-ray diffraction studies revealed that {ON<sup>Ph,Bn</sup>}ÂAlMe<sub>2</sub> (<b>2a</b>), {ON<sup>Me,Bn</sup>}ÂAlMe<sub>2</sub> (<b>2b</b>), {ON<sup>Me,Bn</sup>}<sub>2</sub>AlMe (<b>3b</b>), {ON<sup>Ph,Ph</sup>}<sub>2</sub>AlMe (<b>3c</b>), {ON<sup>Me,Bn</sup>}<sub>2</sub>AlÂ(O<i>i</i>Pr) (<b>4b</b>), and {ON<sup>Ph,Ph</sup>}<sub>2</sub>AlÂ(O<i>i</i>Pr) (<b>4c</b>) all adopt a mononuclear structure in the solid
state; four-coordinate {ON<sup>R1,R2</sup>}ÂAlMe<sub>2</sub> and five-coordinate
{ON<sup>Me,Bn</sup>}<sub>2</sub>AlÂ(O<i>i</i>Pr) feature
respectively distorted-tetrahedral and trigonal-bipyramidal geometries.
The <sup>1</sup>H, <sup>13</sup>CÂ{<sup>1</sup>H}, and <sup>19</sup>FÂ{<sup>1</sup>H} NMR data indicate that the structures observed in
the solid state are retained in CD<sub>2</sub>Cl<sub>2</sub> or C<sub>6</sub>D<sub>6</sub> solution at room temperature. The binary systems
{ON<sup>R1,R2</sup>}ÂAlMe<sub>2</sub> (<b>2</b>)/BnOH and discrete
{ON<sup>R1,R2</sup>}<sub>2</sub>AlÂ(O<i>i</i>Pr) (<b>4</b>) are effective catalysts for the controlled ROP of Δ-caprolactone
and <i>rac</i>-lactide, both in bulk molten monomer and
in toluene solution/slurry. In contrast to the case for {ON<sup>R</sup>NO}ÂAlÂ(O<i>i</i>Pr), having a bridged tetradentate fluorinated
dialkoxy-diimino ligand that provides isotactic-enriched polylactides,
the unbridged compounds {ON<sup>R1,R2</sup>}<sub>2</sub>AlÂ(O<i>i</i>Pr) (<b>4</b>) produce atactic PLAs. The key element
which appears to be at the origin of the absence of stereocontrol
is the lack of bridge between the two imino-alkoxy moieties, possibly
via a decrease in the rigidity of the compounds and/or a different
positioning of N,O vs N,N heteroatoms in axial sites
Indium Complexes of Fluorinated Dialkoxy-Diimino Salen-like Ligands for Ring-Opening Polymerization of <i>rac</i>-Lactide: How Does Indium Compare to Aluminum?
The reaction between InCl<sub>3</sub> and {ON<sup>Et</sup>NO}ÂK<sub>2</sub> (<b>1a</b>), prepared from (CF<sub>3</sub>)<sub>2</sub>(OH)ÂCCH<sub>2</sub>CÂ(CH<sub>3</sub>)î»NâRâNî»CÂ(CH<sub>3</sub>)ÂCH<sub>2</sub>CÂ(OH)Â(CF<sub>3</sub>)<sub>2</sub> ({ON<sup>Et</sup>NO}ÂH<sub>2</sub>, R = C<sub>2</sub>H<sub>4</sub> (<b>a</b>); {ON<sup>Cy</sup>NO}ÂH<sub>2</sub>, R = <i>rac</i>-1,2-cyclohexylene
(<b>b</b>)) and PhCH<sub>2</sub>K, gave {ON<sup>Et</sup>NO}ÂInCl
(<b>2a</b>). The reaction between InCl<sub>3</sub> and 3 equiv
of MeLi led to a mixture of [InMe<sub>3</sub>] and LiÂ[InMe<sub>4</sub>], which upon further treatment with {ON<sup>R</sup>NO}ÂH<sub>2</sub> proligands gave the ate complexes [{ON<sup>R</sup>NO}ÂLi]ÂInMe<sub>2</sub> (<b>4a</b>,<b>b</b>); the methyl complex {ON<sup>Et</sup>NO}ÂInMe (<b>3a</b>) was also isolated from this reaction.
Hydrocarbyl complexes {ON<sup>R</sup>NO}ÂInÂ(CH<sub>2</sub>SiMe<sub>3</sub>) (<b>5a</b>,<b>b</b>) were prepared cleanly from
the 1:1 reactions between InÂ(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub> and {ON<sup>R</sup>NO}ÂH<sub>2</sub>. The solid-state molecular structures
of mononuclear <b>2a</b>, <b>3a, 4b</b>, and <b>5b</b> and of [(<b>1a</b>)<sub>2</sub>-(Ό-H<sub>2</sub>O)]<sub><i>n</i></sub>, a distorted cubane-like core made up of
four potassium atoms and two ligands, were determined. Compounds <b>5a</b>,<b>b</b> are moderately active initiators/catalysts
for the ring-opening polymerization of <i>rac</i>-lactide,
giving polymers with controlled molecular weights and narrow polydispersities,
especially in the presence of added isopropyl alcohol (1â10
equiv) as exogenous initiator. Isotactic-enriched (<i>P</i><sub>m</sub> = 0.62â0.69) PLAs were obtained from <b>5a</b>, while <b>5b</b> gave atactic materials. The heterobimetallic
compounds <b>4a</b>,<b>b</b> are also active and afforded
slightly heterotactic-enriched PLAs (<i>P</i><sub>r</sub> = 0.57â0.62), but with broader polydispersities. Those results
allowed us to discuss the initiation mechanisms according to the constitution
of the systems (alkyl vs alkyl/<i>i</i>PrOH) and also stereoselective
abilities as a function of the nature (In vs Al) and coordination
environment (Îș<sup>4</sup>-ONNO vs. Îș<sup>2</sup>-NN)
of the metal center
Hydrogen Bond Templated 1:1 Macrocyclization through an Olefin Metathesis/Hydrogenation Sequence
The construction of pyridine-containing macrocyclic architectures using a nonmetallic template is described. 4,6-Dichlororesorcinol was used as an exotemplate to self-organize two aza-heterocyclic units by OH···N hydrogen bonds. Subsequent sequential double olefin metathesis/hydrogenation reactions employing a single rutheniumâalkylidene precatalyst open access to macrocyclic molecules
MeerweinâPonndorfâVerley-Type Reduction Processes in Aluminum and Indium Isopropoxide Complexes of Imino-Phenolate Ligands
Unexpected MeerweinâPonndorfâVerley (MPV)
reduction
products have been obtained during attempts to prepare aluminum and
indium isopropoxide complexes of an imino-phenolate ligand derived
from 8-aminoquinoline ({ONN<sup>qui</sup>}<sup>â</sup>). Reaction
of the imino-phenol proligand {ONN<sup>qui</sup>}H and AlÂ(O<i>i</i>Pr)<sub>3</sub> in toluene/THF at 90 °C affords selectively
[{ONN<sup>qui</sup>}Â{ON<sup>H</sup>N<sup>qui</sup>}ÂAl] (<b>1a</b>), which contains a monoanionicÂ{ONN<sup>qui</sup>}<sup>â</sup> ligand and another dianionic ligand ({ON<sup>H</sup>N<sup>qui</sup>}<sup>2â</sup>) that results from the reduction of the latter
imino group into an amido moiety. The same and similar MPV reduction
products <b>1a</b> and [{ONN<sup>qui</sup>}Â{ON<sup>H</sup>N<sup>qui</sup>}ÂIn] (<b>5a</b>) were obtained from the treatment
of {ONN<sup>qui</sup>}ÂAlMe<sub>2</sub> (<b>2a</b>) and dialkylindium
compounds {ONN<sup>qui</sup>}ÂInMe<sub>2</sub> (<b>3a</b>) and
{ONN<sup>qui</sup>}ÂInÂ(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub> (<b>4a</b>), respectively, with isopropyl alcohol in THF at room temperature.
Related reactions of AlÂ(O<i>i</i>Pr)<sub>3</sub> with imino-phenolÂ(ate)
(pro)Âligands bearing <i>N</i>-benzyl- and <i>N</i>-methylÂ(2-pyridinyl) substituents or of <i>i</i>PrOH with
{ON<sup>Bn</sup>}ÂAlMe<sub>2</sub> (<b>2b</b>) and {ONN<sup>CH2pyr</sup>}ÂAlMe<sub>2</sub> (<b>2c</b>) did not lead to MPV reduction
products but to the expected {ON<sup>Bn</sup>}<sub>2</sub>AlÂ(O<i>i</i>Pr) (<b>6b</b>) and {ONN<sup>CH2Pyr</sup>}<sub>2</sub>AlÂ(O<i>i</i>Pr) (<b>6c</b>) compounds (and other
unidentified products). The solid-state structures of <b>1a</b>, <b>3a</b>, <b>4a</b>, and <b>5a</b> were determined
by X-ray diffraction studies. DFT computations performed on the putative
complex {ONN<sup>qui</sup>}<sub>2</sub>AlÂ(O<i>i</i>Pr) (â<b>6a</b>â = <b>Ia</b>) and its isolated analogue {ON<sup>Bn</sup>}<sub>2</sub>AlÂ(O<i>i</i>Pr) (<b>6b</b>)
indicated an intramolecular MPV pathway with direct hydrogen transfer.
Formation of <b>1a</b> from the presumed alkoxide intermediate <b>Ia</b> is calculated to be a highly exergonic reaction which features
a relatively low activation barrier. On the other hand, formation
of the MPV reaction products from <b>6b</b> appears to be highly
unfavorable on both thermodynamic and kinetic grounds
MeerweinâPonndorfâVerley-Type Reduction Processes in Aluminum and Indium Isopropoxide Complexes of Imino-Phenolate Ligands
Unexpected MeerweinâPonndorfâVerley (MPV)
reduction
products have been obtained during attempts to prepare aluminum and
indium isopropoxide complexes of an imino-phenolate ligand derived
from 8-aminoquinoline ({ONN<sup>qui</sup>}<sup>â</sup>). Reaction
of the imino-phenol proligand {ONN<sup>qui</sup>}H and AlÂ(O<i>i</i>Pr)<sub>3</sub> in toluene/THF at 90 °C affords selectively
[{ONN<sup>qui</sup>}Â{ON<sup>H</sup>N<sup>qui</sup>}ÂAl] (<b>1a</b>), which contains a monoanionicÂ{ONN<sup>qui</sup>}<sup>â</sup> ligand and another dianionic ligand ({ON<sup>H</sup>N<sup>qui</sup>}<sup>2â</sup>) that results from the reduction of the latter
imino group into an amido moiety. The same and similar MPV reduction
products <b>1a</b> and [{ONN<sup>qui</sup>}Â{ON<sup>H</sup>N<sup>qui</sup>}ÂIn] (<b>5a</b>) were obtained from the treatment
of {ONN<sup>qui</sup>}ÂAlMe<sub>2</sub> (<b>2a</b>) and dialkylindium
compounds {ONN<sup>qui</sup>}ÂInMe<sub>2</sub> (<b>3a</b>) and
{ONN<sup>qui</sup>}ÂInÂ(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub> (<b>4a</b>), respectively, with isopropyl alcohol in THF at room temperature.
Related reactions of AlÂ(O<i>i</i>Pr)<sub>3</sub> with imino-phenolÂ(ate)
(pro)Âligands bearing <i>N</i>-benzyl- and <i>N</i>-methylÂ(2-pyridinyl) substituents or of <i>i</i>PrOH with
{ON<sup>Bn</sup>}ÂAlMe<sub>2</sub> (<b>2b</b>) and {ONN<sup>CH2pyr</sup>}ÂAlMe<sub>2</sub> (<b>2c</b>) did not lead to MPV reduction
products but to the expected {ON<sup>Bn</sup>}<sub>2</sub>AlÂ(O<i>i</i>Pr) (<b>6b</b>) and {ONN<sup>CH2Pyr</sup>}<sub>2</sub>AlÂ(O<i>i</i>Pr) (<b>6c</b>) compounds (and other
unidentified products). The solid-state structures of <b>1a</b>, <b>3a</b>, <b>4a</b>, and <b>5a</b> were determined
by X-ray diffraction studies. DFT computations performed on the putative
complex {ONN<sup>qui</sup>}<sub>2</sub>AlÂ(O<i>i</i>Pr) (â<b>6a</b>â = <b>Ia</b>) and its isolated analogue {ON<sup>Bn</sup>}<sub>2</sub>AlÂ(O<i>i</i>Pr) (<b>6b</b>)
indicated an intramolecular MPV pathway with direct hydrogen transfer.
Formation of <b>1a</b> from the presumed alkoxide intermediate <b>Ia</b> is calculated to be a highly exergonic reaction which features
a relatively low activation barrier. On the other hand, formation
of the MPV reaction products from <b>6b</b> appears to be highly
unfavorable on both thermodynamic and kinetic grounds
Indium Complexes of Fluorinated Dialkoxy-Diimino Salen-like Ligands for Ring-Opening Polymerization of <i>rac</i>-Lactide: How Does Indium Compare to Aluminum?
The reaction between InCl<sub>3</sub> and {ON<sup>Et</sup>NO}ÂK<sub>2</sub> (<b>1a</b>), prepared from (CF<sub>3</sub>)<sub>2</sub>(OH)ÂCCH<sub>2</sub>CÂ(CH<sub>3</sub>)î»NâRâNî»CÂ(CH<sub>3</sub>)ÂCH<sub>2</sub>CÂ(OH)Â(CF<sub>3</sub>)<sub>2</sub> ({ON<sup>Et</sup>NO}ÂH<sub>2</sub>, R = C<sub>2</sub>H<sub>4</sub> (<b>a</b>); {ON<sup>Cy</sup>NO}ÂH<sub>2</sub>, R = <i>rac</i>-1,2-cyclohexylene
(<b>b</b>)) and PhCH<sub>2</sub>K, gave {ON<sup>Et</sup>NO}ÂInCl
(<b>2a</b>). The reaction between InCl<sub>3</sub> and 3 equiv
of MeLi led to a mixture of [InMe<sub>3</sub>] and LiÂ[InMe<sub>4</sub>], which upon further treatment with {ON<sup>R</sup>NO}ÂH<sub>2</sub> proligands gave the ate complexes [{ON<sup>R</sup>NO}ÂLi]ÂInMe<sub>2</sub> (<b>4a</b>,<b>b</b>); the methyl complex {ON<sup>Et</sup>NO}ÂInMe (<b>3a</b>) was also isolated from this reaction.
Hydrocarbyl complexes {ON<sup>R</sup>NO}ÂInÂ(CH<sub>2</sub>SiMe<sub>3</sub>) (<b>5a</b>,<b>b</b>) were prepared cleanly from
the 1:1 reactions between InÂ(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub> and {ON<sup>R</sup>NO}ÂH<sub>2</sub>. The solid-state molecular structures
of mononuclear <b>2a</b>, <b>3a, 4b</b>, and <b>5b</b> and of [(<b>1a</b>)<sub>2</sub>-(Ό-H<sub>2</sub>O)]<sub><i>n</i></sub>, a distorted cubane-like core made up of
four potassium atoms and two ligands, were determined. Compounds <b>5a</b>,<b>b</b> are moderately active initiators/catalysts
for the ring-opening polymerization of <i>rac</i>-lactide,
giving polymers with controlled molecular weights and narrow polydispersities,
especially in the presence of added isopropyl alcohol (1â10
equiv) as exogenous initiator. Isotactic-enriched (<i>P</i><sub>m</sub> = 0.62â0.69) PLAs were obtained from <b>5a</b>, while <b>5b</b> gave atactic materials. The heterobimetallic
compounds <b>4a</b>,<b>b</b> are also active and afforded
slightly heterotactic-enriched PLAs (<i>P</i><sub>r</sub> = 0.57â0.62), but with broader polydispersities. Those results
allowed us to discuss the initiation mechanisms according to the constitution
of the systems (alkyl vs alkyl/<i>i</i>PrOH) and also stereoselective
abilities as a function of the nature (In vs Al) and coordination
environment (Îș<sup>4</sup>-ONNO vs. Îș<sup>2</sup>-NN)
of the metal center
Synergistic Effect of the TiCl<sub>4</sub>/<i>p</i>âTsOH Promoter System on the Aza-Prins Cyclization
A novel
aza-Prins cyclization promoted by a synergistic combination
between a Lewis acid and a BrĂžnsted acid to efficiently afford
piperidines is described. Contrary to what has been previously reported
in the literature, the generality of the reaction employing <i>N</i>-alkyl, <i>N</i>-aryl, and nonprotected homoallylamines
has been demonstrated. The reaction is highly diastereoselective depending
on the homoallylic amine used, <i>N</i>-PMP homoallyl amine
leading preferentially to the <i>trans</i> diastereomer,
and free homoallylamine affording the deprotected piperidine as single <i>cis</i> diastereomer
- âŠ