75 research outputs found

    Synthesis and Structural Diversity of Group 4 Metal Complexes with Multidentate Tethered Phenoxy-Amidine and Phenoxy-Amidinate Ligands

    No full text
    The coordination chemistry of the multidentate tethered amidine-phenol {4,6-<i>t</i>Bu<sub>2</sub>C<sub>6</sub>H<sub>2</sub>O­(2-C­(NR)NR}­H<sub>2</sub> ({LON<sup>R</sup>}­H<sub>2</sub>, R = <i>i</i>Pr, 2,6-<i>i</i>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (Ar)) and new guanidine-phenol {4,6-<i>t</i>Bu<sub>2</sub>C<sub>6</sub>H<sub>2</sub>ON­(C<sub>6</sub>H<sub>5</sub>)­(2-C­(NR)NR}­H<sub>2</sub> ({LON­(Ph)­N<sup><i>i</i>Pr</sup>}­H<sub>2</sub>) pro-ligands with group 4 metals has been studied. σ-Bond and salt metathesis reactions were explored to coordinate these (pro)­ligands onto zirconium and hafnium. Alkane elimination reactions between {LON<sup>R</sup>}­H<sub>2</sub> and Zr­(CH<sub>2</sub>Ph)<sub>4</sub> afforded mixed-ligand monobenzyl {LO<sup>H</sup>N<sup>R</sup>}­{LON<sup>R</sup>}­Zr­(CH<sub>2</sub>Ph) (R = <i>i</i>Pr; <b>1</b>) and monoligand tribenzyl {LO<sup>H</sup>N<sup>Ar</sup>}­Zr­(CH<sub>2</sub>Ph)<sub>3</sub> (R = Ar; <b>2</b>) complexes, respectively. Alkane and amine elimination reactions between {LON­(Ph)­N<sup><i>i</i>Pr</sup>}­H<sub>2</sub> and Zr­(CH<sub>2</sub>Ph)<sub>4</sub> or Hf­(NMe<sub>2</sub>)<sub>4</sub> unexpectedly resulted in cleavage of the ligand backbone and eventual isolation of {(Ph)­NC<sub>6</sub>H<sub>2</sub>(<i>t</i>Bu)<sub>2</sub>O}­Zr­{(<i>i</i>PrN)<sub>2</sub>CCH<sub>2</sub>Ph}<sub>2</sub> (<b>3</b>) and {(Ph)­NC<sub>6</sub>H<sub>2</sub>(<i>t</i>Bu)<sub>2</sub>O}­Hf­{(<i>i</i>PrN)<sub>2</sub>CNMe<sub>2</sub>}<sub>2</sub> (<b>4</b>), respectively. Salt metathesis reactions between {LON<sup>R</sup>}­Li<sub>2</sub> and ZrCl<sub>4</sub>(THF)<sub><i>n</i></sub> (<i>n</i> = 0, 2), conducted in 1:1 ratios, led upon crystallization to diverse chloro complexes: [{LON<sup><i>i</i>Pr</sup>}­ZrCl]<sub>3</sub>(ÎŒ<sub>3</sub>-O)­(ÎŒ<sub>3</sub>-Cl) (<b>5</b>), [{LON<sup>Ar</sup>}<sub>2</sub>ZrCl­(ÎŒ<sub>2</sub>-Cl)]<sub>2</sub>[{L<sup>H</sup>ON<sup>Ar</sup>}­ZrCl­(ÎŒ<sub>2</sub>-Cl)]­(ÎŒ<sub>3</sub>–OH) (<b>6</b>), and {LO<sup>H</sup>N<sup>Ar</sup>}­ZrCl<sub>3</sub>(THF) (<b>7</b>). Similar salt metathesis reactions between the monolithium salts {L<sup>H</sup>ON<sup>R</sup>}Li and ZrCl<sub>4</sub>, conducted in 2:1 ratios, allowed the selective preparation of bis­(phenoxy-amidine) complexes with pendant amino groups {LO<sup>H</sup>N<sup>R</sup>}<sub>2</sub>ZrCl<sub>2</sub> (R = <i>i</i>Pr, <b>8</b>; R = Ar, <b>9</b>). All complexes were authenticated by elemental analysis, X-ray crystallography, and NMR spectroscopy. Complexes <b>5</b>, <b>6</b>, <b>8</b>, and <b>9</b>, upon activation with MAO, showed poor to moderate productivities (4–172 (kg of PE) mol<sup>–1</sup> h<sup>–1</sup>) in the polymerization of ethylene, giving linear polymers with large polydispersities

    Aluminum Complexes of Bidentate Fluorinated Alkoxy-Imino Ligands: Syntheses, Structures, and Use in Ring-Opening Polymerization of Cyclic Esters

    No full text
    The coordination chemistry of bidentate fluorinated alkoxy-imino ligands onto Al­(III) centers has been studied. The proligands (CF<sub>3</sub>)<sub>2</sub>C­(OH)­CH<sub>2</sub>C­(R<sup>1</sup>)N–R<sup>2</sup> ({ON<sup>R1,R2</sup>}­H; R<sup>1</sup> = Me, Ph; R<sup>2</sup> = Ph, CH<sub>2</sub>Ph, cyclohexyl; <b>1a</b>–<b>d</b>) react selectively with AlMe<sub>3</sub> (0.5 or 1.0 equiv) and AlMe<sub>2</sub>(O<i>i</i>Pr) or Al­(O<i>i</i>Pr)<sub>3</sub> (0.5 equiv) to give the corresponding monoligand compounds {ON<sup>R1,R2</sup>}­AlMe<sub>2</sub> (<b>2a</b>–<b>d</b>) and the bis-ligand compounds {ON<sup>R1,R2</sup>}<sub>2</sub>AlMe (<b>3a</b>–<b>d</b>) and {ON<sup>R1,R2</sup>}<sub>2</sub>Al­(O<i>i</i>Pr) (<b>4a</b>–<b>c</b>). X-ray diffraction studies revealed that {ON<sup>Ph,Bn</sup>}­AlMe<sub>2</sub> (<b>2a</b>), {ON<sup>Me,Bn</sup>}­AlMe<sub>2</sub> (<b>2b</b>), {ON<sup>Me,Bn</sup>}<sub>2</sub>AlMe (<b>3b</b>), {ON<sup>Ph,Ph</sup>}<sub>2</sub>AlMe (<b>3c</b>), {ON<sup>Me,Bn</sup>}<sub>2</sub>Al­(O<i>i</i>Pr) (<b>4b</b>), and {ON<sup>Ph,Ph</sup>}<sub>2</sub>Al­(O<i>i</i>Pr) (<b>4c</b>) all adopt a mononuclear structure in the solid state; four-coordinate {ON<sup>R1,R2</sup>}­AlMe<sub>2</sub> and five-coordinate {ON<sup>Me,Bn</sup>}<sub>2</sub>Al­(O<i>i</i>Pr) feature respectively distorted-tetrahedral and trigonal-bipyramidal geometries. The <sup>1</sup>H, <sup>13</sup>C­{<sup>1</sup>H}, and <sup>19</sup>F­{<sup>1</sup>H} NMR data indicate that the structures observed in the solid state are retained in CD<sub>2</sub>Cl<sub>2</sub> or C<sub>6</sub>D<sub>6</sub> solution at room temperature. The binary systems {ON<sup>R1,R2</sup>}­AlMe<sub>2</sub> (<b>2</b>)/BnOH and discrete {ON<sup>R1,R2</sup>}<sub>2</sub>Al­(O<i>i</i>Pr) (<b>4</b>) are effective catalysts for the controlled ROP of Δ-caprolactone and <i>rac</i>-lactide, both in bulk molten monomer and in toluene solution/slurry. In contrast to the case for {ON<sup>R</sup>NO}­Al­(O<i>i</i>Pr), having a bridged tetradentate fluorinated dialkoxy-diimino ligand that provides isotactic-enriched polylactides, the unbridged compounds {ON<sup>R1,R2</sup>}<sub>2</sub>Al­(O<i>i</i>Pr) (<b>4</b>) produce atactic PLAs. The key element which appears to be at the origin of the absence of stereocontrol is the lack of bridge between the two imino-alkoxy moieties, possibly via a decrease in the rigidity of the compounds and/or a different positioning of N,O vs N,N heteroatoms in axial sites

    Synthesis and Structural Diversity of Group 4 Metal Complexes with Multidentate Tethered Phenoxy-Amidine and Phenoxy-Amidinate Ligands

    No full text
    The coordination chemistry of the multidentate tethered amidine-phenol {4,6-<i>t</i>Bu<sub>2</sub>C<sub>6</sub>H<sub>2</sub>O­(2-C­(NR)NR}­H<sub>2</sub> ({LON<sup>R</sup>}­H<sub>2</sub>, R = <i>i</i>Pr, 2,6-<i>i</i>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (Ar)) and new guanidine-phenol {4,6-<i>t</i>Bu<sub>2</sub>C<sub>6</sub>H<sub>2</sub>ON­(C<sub>6</sub>H<sub>5</sub>)­(2-C­(NR)NR}­H<sub>2</sub> ({LON­(Ph)­N<sup><i>i</i>Pr</sup>}­H<sub>2</sub>) pro-ligands with group 4 metals has been studied. σ-Bond and salt metathesis reactions were explored to coordinate these (pro)­ligands onto zirconium and hafnium. Alkane elimination reactions between {LON<sup>R</sup>}­H<sub>2</sub> and Zr­(CH<sub>2</sub>Ph)<sub>4</sub> afforded mixed-ligand monobenzyl {LO<sup>H</sup>N<sup>R</sup>}­{LON<sup>R</sup>}­Zr­(CH<sub>2</sub>Ph) (R = <i>i</i>Pr; <b>1</b>) and monoligand tribenzyl {LO<sup>H</sup>N<sup>Ar</sup>}­Zr­(CH<sub>2</sub>Ph)<sub>3</sub> (R = Ar; <b>2</b>) complexes, respectively. Alkane and amine elimination reactions between {LON­(Ph)­N<sup><i>i</i>Pr</sup>}­H<sub>2</sub> and Zr­(CH<sub>2</sub>Ph)<sub>4</sub> or Hf­(NMe<sub>2</sub>)<sub>4</sub> unexpectedly resulted in cleavage of the ligand backbone and eventual isolation of {(Ph)­NC<sub>6</sub>H<sub>2</sub>(<i>t</i>Bu)<sub>2</sub>O}­Zr­{(<i>i</i>PrN)<sub>2</sub>CCH<sub>2</sub>Ph}<sub>2</sub> (<b>3</b>) and {(Ph)­NC<sub>6</sub>H<sub>2</sub>(<i>t</i>Bu)<sub>2</sub>O}­Hf­{(<i>i</i>PrN)<sub>2</sub>CNMe<sub>2</sub>}<sub>2</sub> (<b>4</b>), respectively. Salt metathesis reactions between {LON<sup>R</sup>}­Li<sub>2</sub> and ZrCl<sub>4</sub>(THF)<sub><i>n</i></sub> (<i>n</i> = 0, 2), conducted in 1:1 ratios, led upon crystallization to diverse chloro complexes: [{LON<sup><i>i</i>Pr</sup>}­ZrCl]<sub>3</sub>(ÎŒ<sub>3</sub>-O)­(ÎŒ<sub>3</sub>-Cl) (<b>5</b>), [{LON<sup>Ar</sup>}<sub>2</sub>ZrCl­(ÎŒ<sub>2</sub>-Cl)]<sub>2</sub>[{L<sup>H</sup>ON<sup>Ar</sup>}­ZrCl­(ÎŒ<sub>2</sub>-Cl)]­(ÎŒ<sub>3</sub>–OH) (<b>6</b>), and {LO<sup>H</sup>N<sup>Ar</sup>}­ZrCl<sub>3</sub>(THF) (<b>7</b>). Similar salt metathesis reactions between the monolithium salts {L<sup>H</sup>ON<sup>R</sup>}Li and ZrCl<sub>4</sub>, conducted in 2:1 ratios, allowed the selective preparation of bis­(phenoxy-amidine) complexes with pendant amino groups {LO<sup>H</sup>N<sup>R</sup>}<sub>2</sub>ZrCl<sub>2</sub> (R = <i>i</i>Pr, <b>8</b>; R = Ar, <b>9</b>). All complexes were authenticated by elemental analysis, X-ray crystallography, and NMR spectroscopy. Complexes <b>5</b>, <b>6</b>, <b>8</b>, and <b>9</b>, upon activation with MAO, showed poor to moderate productivities (4–172 (kg of PE) mol<sup>–1</sup> h<sup>–1</sup>) in the polymerization of ethylene, giving linear polymers with large polydispersities

    Aluminum Complexes of Bidentate Fluorinated Alkoxy-Imino Ligands: Syntheses, Structures, and Use in Ring-Opening Polymerization of Cyclic Esters

    No full text
    The coordination chemistry of bidentate fluorinated alkoxy-imino ligands onto Al­(III) centers has been studied. The proligands (CF<sub>3</sub>)<sub>2</sub>C­(OH)­CH<sub>2</sub>C­(R<sup>1</sup>)N–R<sup>2</sup> ({ON<sup>R1,R2</sup>}­H; R<sup>1</sup> = Me, Ph; R<sup>2</sup> = Ph, CH<sub>2</sub>Ph, cyclohexyl; <b>1a</b>–<b>d</b>) react selectively with AlMe<sub>3</sub> (0.5 or 1.0 equiv) and AlMe<sub>2</sub>(O<i>i</i>Pr) or Al­(O<i>i</i>Pr)<sub>3</sub> (0.5 equiv) to give the corresponding monoligand compounds {ON<sup>R1,R2</sup>}­AlMe<sub>2</sub> (<b>2a</b>–<b>d</b>) and the bis-ligand compounds {ON<sup>R1,R2</sup>}<sub>2</sub>AlMe (<b>3a</b>–<b>d</b>) and {ON<sup>R1,R2</sup>}<sub>2</sub>Al­(O<i>i</i>Pr) (<b>4a</b>–<b>c</b>). X-ray diffraction studies revealed that {ON<sup>Ph,Bn</sup>}­AlMe<sub>2</sub> (<b>2a</b>), {ON<sup>Me,Bn</sup>}­AlMe<sub>2</sub> (<b>2b</b>), {ON<sup>Me,Bn</sup>}<sub>2</sub>AlMe (<b>3b</b>), {ON<sup>Ph,Ph</sup>}<sub>2</sub>AlMe (<b>3c</b>), {ON<sup>Me,Bn</sup>}<sub>2</sub>Al­(O<i>i</i>Pr) (<b>4b</b>), and {ON<sup>Ph,Ph</sup>}<sub>2</sub>Al­(O<i>i</i>Pr) (<b>4c</b>) all adopt a mononuclear structure in the solid state; four-coordinate {ON<sup>R1,R2</sup>}­AlMe<sub>2</sub> and five-coordinate {ON<sup>Me,Bn</sup>}<sub>2</sub>Al­(O<i>i</i>Pr) feature respectively distorted-tetrahedral and trigonal-bipyramidal geometries. The <sup>1</sup>H, <sup>13</sup>C­{<sup>1</sup>H}, and <sup>19</sup>F­{<sup>1</sup>H} NMR data indicate that the structures observed in the solid state are retained in CD<sub>2</sub>Cl<sub>2</sub> or C<sub>6</sub>D<sub>6</sub> solution at room temperature. The binary systems {ON<sup>R1,R2</sup>}­AlMe<sub>2</sub> (<b>2</b>)/BnOH and discrete {ON<sup>R1,R2</sup>}<sub>2</sub>Al­(O<i>i</i>Pr) (<b>4</b>) are effective catalysts for the controlled ROP of Δ-caprolactone and <i>rac</i>-lactide, both in bulk molten monomer and in toluene solution/slurry. In contrast to the case for {ON<sup>R</sup>NO}­Al­(O<i>i</i>Pr), having a bridged tetradentate fluorinated dialkoxy-diimino ligand that provides isotactic-enriched polylactides, the unbridged compounds {ON<sup>R1,R2</sup>}<sub>2</sub>Al­(O<i>i</i>Pr) (<b>4</b>) produce atactic PLAs. The key element which appears to be at the origin of the absence of stereocontrol is the lack of bridge between the two imino-alkoxy moieties, possibly via a decrease in the rigidity of the compounds and/or a different positioning of N,O vs N,N heteroatoms in axial sites

    Indium Complexes of Fluorinated Dialkoxy-Diimino Salen-like Ligands for Ring-Opening Polymerization of <i>rac</i>-Lactide: How Does Indium Compare to Aluminum?

    No full text
    The reaction between InCl<sub>3</sub> and {ON<sup>Et</sup>NO}­K<sub>2</sub> (<b>1a</b>), prepared from (CF<sub>3</sub>)<sub>2</sub>(OH)­CCH<sub>2</sub>C­(CH<sub>3</sub>)N–R–NC­(CH<sub>3</sub>)­CH<sub>2</sub>C­(OH)­(CF<sub>3</sub>)<sub>2</sub> ({ON<sup>Et</sup>NO}­H<sub>2</sub>, R = C<sub>2</sub>H<sub>4</sub> (<b>a</b>); {ON<sup>Cy</sup>NO}­H<sub>2</sub>, R = <i>rac</i>-1,2-cyclohexylene (<b>b</b>)) and PhCH<sub>2</sub>K, gave {ON<sup>Et</sup>NO}­InCl (<b>2a</b>). The reaction between InCl<sub>3</sub> and 3 equiv of MeLi led to a mixture of [InMe<sub>3</sub>] and Li­[InMe<sub>4</sub>], which upon further treatment with {ON<sup>R</sup>NO}­H<sub>2</sub> proligands gave the ate complexes [{ON<sup>R</sup>NO}­Li]­InMe<sub>2</sub> (<b>4a</b>,<b>b</b>); the methyl complex {ON<sup>Et</sup>NO}­InMe (<b>3a</b>) was also isolated from this reaction. Hydrocarbyl complexes {ON<sup>R</sup>NO}­In­(CH<sub>2</sub>SiMe<sub>3</sub>) (<b>5a</b>,<b>b</b>) were prepared cleanly from the 1:1 reactions between In­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub> and {ON<sup>R</sup>NO}­H<sub>2</sub>. The solid-state molecular structures of mononuclear <b>2a</b>, <b>3a, 4b</b>, and <b>5b</b> and of [(<b>1a</b>)<sub>2</sub>-(ÎŒ-H<sub>2</sub>O)]<sub><i>n</i></sub>, a distorted cubane-like core made up of four potassium atoms and two ligands, were determined. Compounds <b>5a</b>,<b>b</b> are moderately active initiators/catalysts for the ring-opening polymerization of <i>rac</i>-lactide, giving polymers with controlled molecular weights and narrow polydispersities, especially in the presence of added isopropyl alcohol (1–10 equiv) as exogenous initiator. Isotactic-enriched (<i>P</i><sub>m</sub> = 0.62–0.69) PLAs were obtained from <b>5a</b>, while <b>5b</b> gave atactic materials. The heterobimetallic compounds <b>4a</b>,<b>b</b> are also active and afforded slightly heterotactic-enriched PLAs (<i>P</i><sub>r</sub> = 0.57–0.62), but with broader polydispersities. Those results allowed us to discuss the initiation mechanisms according to the constitution of the systems (alkyl vs alkyl/<i>i</i>PrOH) and also stereoselective abilities as a function of the nature (In vs Al) and coordination environment (Îș<sup>4</sup>-ONNO vs. Îș<sup>2</sup>-NN) of the metal center

    Hydrogen Bond Templated 1:1 Macrocyclization through an Olefin Metathesis/Hydrogenation Sequence

    No full text
    The construction of pyridine-containing macrocyclic architectures using a nonmetallic template is described. 4,6-Dichlororesorcinol was used as an exotemplate to self-organize two aza-heterocyclic units by OH···N hydrogen bonds. Subsequent sequential double olefin metathesis/hydrogenation reactions employing a single ruthenium–alkylidene precatalyst open access to macrocyclic molecules

    Meerwein–Ponndorf–Verley-Type Reduction Processes in Aluminum and Indium Isopropoxide Complexes of Imino-Phenolate Ligands

    No full text
    Unexpected Meerwein–Ponndorf–Verley (MPV) reduction products have been obtained during attempts to prepare aluminum and indium isopropoxide complexes of an imino-phenolate ligand derived from 8-aminoquinoline ({ONN<sup>qui</sup>}<sup>−</sup>). Reaction of the imino-phenol proligand {ONN<sup>qui</sup>}H and Al­(O<i>i</i>Pr)<sub>3</sub> in toluene/THF at 90 °C affords selectively [{ONN<sup>qui</sup>}­{ON<sup>H</sup>N<sup>qui</sup>}­Al] (<b>1a</b>), which contains a monoanionic­{ONN<sup>qui</sup>}<sup>−</sup> ligand and another dianionic ligand ({ON<sup>H</sup>N<sup>qui</sup>}<sup>2–</sup>) that results from the reduction of the latter imino group into an amido moiety. The same and similar MPV reduction products <b>1a</b> and [{ONN<sup>qui</sup>}­{ON<sup>H</sup>N<sup>qui</sup>}­In] (<b>5a</b>) were obtained from the treatment of {ONN<sup>qui</sup>}­AlMe<sub>2</sub> (<b>2a</b>) and dialkylindium compounds {ONN<sup>qui</sup>}­InMe<sub>2</sub> (<b>3a</b>) and {ONN<sup>qui</sup>}­In­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub> (<b>4a</b>), respectively, with isopropyl alcohol in THF at room temperature. Related reactions of Al­(O<i>i</i>Pr)<sub>3</sub> with imino-phenol­(ate) (pro)­ligands bearing <i>N</i>-benzyl- and <i>N</i>-methyl­(2-pyridinyl) substituents or of <i>i</i>PrOH with {ON<sup>Bn</sup>}­AlMe<sub>2</sub> (<b>2b</b>) and {ONN<sup>CH2pyr</sup>}­AlMe<sub>2</sub> (<b>2c</b>) did not lead to MPV reduction products but to the expected {ON<sup>Bn</sup>}<sub>2</sub>Al­(O<i>i</i>Pr) (<b>6b</b>) and {ONN<sup>CH2Pyr</sup>}<sub>2</sub>Al­(O<i>i</i>Pr) (<b>6c</b>) compounds (and other unidentified products). The solid-state structures of <b>1a</b>, <b>3a</b>, <b>4a</b>, and <b>5a</b> were determined by X-ray diffraction studies. DFT computations performed on the putative complex {ONN<sup>qui</sup>}<sub>2</sub>Al­(O<i>i</i>Pr) (“<b>6a</b>” = <b>Ia</b>) and its isolated analogue {ON<sup>Bn</sup>}<sub>2</sub>Al­(O<i>i</i>Pr) (<b>6b</b>) indicated an intramolecular MPV pathway with direct hydrogen transfer. Formation of <b>1a</b> from the presumed alkoxide intermediate <b>Ia</b> is calculated to be a highly exergonic reaction which features a relatively low activation barrier. On the other hand, formation of the MPV reaction products from <b>6b</b> appears to be highly unfavorable on both thermodynamic and kinetic grounds

    Meerwein–Ponndorf–Verley-Type Reduction Processes in Aluminum and Indium Isopropoxide Complexes of Imino-Phenolate Ligands

    No full text
    Unexpected Meerwein–Ponndorf–Verley (MPV) reduction products have been obtained during attempts to prepare aluminum and indium isopropoxide complexes of an imino-phenolate ligand derived from 8-aminoquinoline ({ONN<sup>qui</sup>}<sup>−</sup>). Reaction of the imino-phenol proligand {ONN<sup>qui</sup>}H and Al­(O<i>i</i>Pr)<sub>3</sub> in toluene/THF at 90 °C affords selectively [{ONN<sup>qui</sup>}­{ON<sup>H</sup>N<sup>qui</sup>}­Al] (<b>1a</b>), which contains a monoanionic­{ONN<sup>qui</sup>}<sup>−</sup> ligand and another dianionic ligand ({ON<sup>H</sup>N<sup>qui</sup>}<sup>2–</sup>) that results from the reduction of the latter imino group into an amido moiety. The same and similar MPV reduction products <b>1a</b> and [{ONN<sup>qui</sup>}­{ON<sup>H</sup>N<sup>qui</sup>}­In] (<b>5a</b>) were obtained from the treatment of {ONN<sup>qui</sup>}­AlMe<sub>2</sub> (<b>2a</b>) and dialkylindium compounds {ONN<sup>qui</sup>}­InMe<sub>2</sub> (<b>3a</b>) and {ONN<sup>qui</sup>}­In­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub> (<b>4a</b>), respectively, with isopropyl alcohol in THF at room temperature. Related reactions of Al­(O<i>i</i>Pr)<sub>3</sub> with imino-phenol­(ate) (pro)­ligands bearing <i>N</i>-benzyl- and <i>N</i>-methyl­(2-pyridinyl) substituents or of <i>i</i>PrOH with {ON<sup>Bn</sup>}­AlMe<sub>2</sub> (<b>2b</b>) and {ONN<sup>CH2pyr</sup>}­AlMe<sub>2</sub> (<b>2c</b>) did not lead to MPV reduction products but to the expected {ON<sup>Bn</sup>}<sub>2</sub>Al­(O<i>i</i>Pr) (<b>6b</b>) and {ONN<sup>CH2Pyr</sup>}<sub>2</sub>Al­(O<i>i</i>Pr) (<b>6c</b>) compounds (and other unidentified products). The solid-state structures of <b>1a</b>, <b>3a</b>, <b>4a</b>, and <b>5a</b> were determined by X-ray diffraction studies. DFT computations performed on the putative complex {ONN<sup>qui</sup>}<sub>2</sub>Al­(O<i>i</i>Pr) (“<b>6a</b>” = <b>Ia</b>) and its isolated analogue {ON<sup>Bn</sup>}<sub>2</sub>Al­(O<i>i</i>Pr) (<b>6b</b>) indicated an intramolecular MPV pathway with direct hydrogen transfer. Formation of <b>1a</b> from the presumed alkoxide intermediate <b>Ia</b> is calculated to be a highly exergonic reaction which features a relatively low activation barrier. On the other hand, formation of the MPV reaction products from <b>6b</b> appears to be highly unfavorable on both thermodynamic and kinetic grounds

    Indium Complexes of Fluorinated Dialkoxy-Diimino Salen-like Ligands for Ring-Opening Polymerization of <i>rac</i>-Lactide: How Does Indium Compare to Aluminum?

    No full text
    The reaction between InCl<sub>3</sub> and {ON<sup>Et</sup>NO}­K<sub>2</sub> (<b>1a</b>), prepared from (CF<sub>3</sub>)<sub>2</sub>(OH)­CCH<sub>2</sub>C­(CH<sub>3</sub>)N–R–NC­(CH<sub>3</sub>)­CH<sub>2</sub>C­(OH)­(CF<sub>3</sub>)<sub>2</sub> ({ON<sup>Et</sup>NO}­H<sub>2</sub>, R = C<sub>2</sub>H<sub>4</sub> (<b>a</b>); {ON<sup>Cy</sup>NO}­H<sub>2</sub>, R = <i>rac</i>-1,2-cyclohexylene (<b>b</b>)) and PhCH<sub>2</sub>K, gave {ON<sup>Et</sup>NO}­InCl (<b>2a</b>). The reaction between InCl<sub>3</sub> and 3 equiv of MeLi led to a mixture of [InMe<sub>3</sub>] and Li­[InMe<sub>4</sub>], which upon further treatment with {ON<sup>R</sup>NO}­H<sub>2</sub> proligands gave the ate complexes [{ON<sup>R</sup>NO}­Li]­InMe<sub>2</sub> (<b>4a</b>,<b>b</b>); the methyl complex {ON<sup>Et</sup>NO}­InMe (<b>3a</b>) was also isolated from this reaction. Hydrocarbyl complexes {ON<sup>R</sup>NO}­In­(CH<sub>2</sub>SiMe<sub>3</sub>) (<b>5a</b>,<b>b</b>) were prepared cleanly from the 1:1 reactions between In­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub> and {ON<sup>R</sup>NO}­H<sub>2</sub>. The solid-state molecular structures of mononuclear <b>2a</b>, <b>3a, 4b</b>, and <b>5b</b> and of [(<b>1a</b>)<sub>2</sub>-(ÎŒ-H<sub>2</sub>O)]<sub><i>n</i></sub>, a distorted cubane-like core made up of four potassium atoms and two ligands, were determined. Compounds <b>5a</b>,<b>b</b> are moderately active initiators/catalysts for the ring-opening polymerization of <i>rac</i>-lactide, giving polymers with controlled molecular weights and narrow polydispersities, especially in the presence of added isopropyl alcohol (1–10 equiv) as exogenous initiator. Isotactic-enriched (<i>P</i><sub>m</sub> = 0.62–0.69) PLAs were obtained from <b>5a</b>, while <b>5b</b> gave atactic materials. The heterobimetallic compounds <b>4a</b>,<b>b</b> are also active and afforded slightly heterotactic-enriched PLAs (<i>P</i><sub>r</sub> = 0.57–0.62), but with broader polydispersities. Those results allowed us to discuss the initiation mechanisms according to the constitution of the systems (alkyl vs alkyl/<i>i</i>PrOH) and also stereoselective abilities as a function of the nature (In vs Al) and coordination environment (Îș<sup>4</sup>-ONNO vs. Îș<sup>2</sup>-NN) of the metal center

    Synergistic Effect of the TiCl<sub>4</sub>/<i>p</i>‑TsOH Promoter System on the Aza-Prins Cyclization

    No full text
    A novel aza-Prins cyclization promoted by a synergistic combination between a Lewis acid and a BrĂžnsted acid to efficiently afford piperidines is described. Contrary to what has been previously reported in the literature, the generality of the reaction employing <i>N</i>-alkyl, <i>N</i>-aryl, and nonprotected homoallylamines has been demonstrated. The reaction is highly diastereoselective depending on the homoallylic amine used, <i>N</i>-PMP homoallyl amine leading preferentially to the <i>trans</i> diastereomer, and free homoallylamine affording the deprotected piperidine as single <i>cis</i> diastereomer
    • 

    corecore