18 research outputs found

    The translational repressor 4E-BP mediates hypoxia-induced defects in myotome cells.

    No full text
    International audienceCell growth, proliferation, differentiation and survival are influenced by the availability of oxygen. The effect of hypoxia on embryonic cells and the underlying molecular mechanisms to maintain cellular viability are still poorly understood. In this study, we show that hypoxia during Xenopus embryogenesis rapidly leads to a significant developmental delay and to cell apoptosis after prolonged exposure. We provide strong evidence that hypoxia does not affect somitogenesis but affects the number of mitotic cells and muscle-specific protein accumulation in somites, without interfering with the expression of MyoD and MRF4 transcription factors. We also demonstrate that hypoxia reversibly decreases Akt phosphorylation and increases the total amount of the translational repressor 4E-BP, in combination with an increase of the 4E-BP associated with eIF4E. Interestingly, the inhibition of PI3-kinase or mTOR, with LY29002 or rapamycin, respectively, triggers the 4E-BP accumulation in Xenopus embryos. Finally, the overexpression of the non-phosphorylatable 4E-BP protein induces, similar to hypoxia, a decrease in mitotic cells and a decrease in muscle-specific protein accumulation in somites. Taken together, our studies suggest that 4E-BP plays a central role under hypoxia in promoting the cap-independent translation at the expense of cap-dependent translation and triggers specific defects in muscle development

    Epo Is Relevant Neither for Microvascular Formation Nor for the New Formation and Maintenance of Mice Skeletal Muscle Fibres in Both Normoxia and Hypoxia

    Get PDF
    Erythropoietin (Epo) and vascular growth factor (VEGF) are known to be involved in the regulation of cellular activity when oxygen transport is reduced as in anaemia or hypoxic conditions. Because it has been suggested that Epo could play a role in skeletal muscle development, regeneration, and angiogenesis, we aimed to assess Epo deficiency in both normoxia and hypoxia by using an Epo-deficient transgenic mouse model (Epo-TAgh). Histoimmunology, ELISA and real time RT-PCR did not show any muscle fiber atrophy or accumulation of active HIF-1α but an improvement of microvessel network and an upregulation of VEGFR2 mRNA in Epo-deficient gastrocnemius compared with Wild-Type one. In hypoxia, both models exhibit an upregulation of VEGF120 and VEGFR2 mRNA but no accumulation of Epo protein. EpoR mRNA is not up-regulated in both Epo-deficient and hypoxic gastrocnemius. These results suggest that muscle deconditioning observed in patients suffering from renal failure is not due to Epo deficiency

    Editorial: Innovation policies and practices within innovation ecosystems

    No full text
    International audienceWe explore the growth, scope and impact of the academic literature that has arisen around the concept of innovation ecosystems. We highlight some of the most important definition, the place of innovation policies and the future accomplishments that could be made

    Hypoxia affects muscle cell differentiation: the translational repressor 4E-BP plays a key role

    No full text
    Experimental Biology Meeting, San Diego, CA, APR 21-25, 2012International audienceno abstrac

    Oxygen Modulates the Glutathione Peroxidase Activity during the L6 Myoblast Early Differentiation Process

    No full text
    International audienceAim: This work aims to study the regulation of the glutathione peroxidase and catalase activities in myoblasts from the L6 line exposed to 21%, 5% and 1% O2 during the cell differentiation.Material and methods: Rat L6 myoblasts were grown in 1%, 5% or 21% O2 in the presence or absence of N-acetyl cysteine. The cell proliferation was evaluated by determining the doubling time and kinetics of cultures by counting cells. The cell differentiation was analyzed by determining the myogenic fusion index using antibodies against the myosin heavy chain. The glutathione peroxidase and catalase activities were assayed. The p110-PI3K/Thr308-Akt pathway was studied using western blotting. The oxidative status of the cells was carried out by determining TBARS.Results: 5% O2 improves the glutathione peroxidase activity, p110-PI3K/Thr308-Akt pathway and differentiation while 1% O2 alters all these parameters compared to 21% O2. NAC (0.5 mM) can prevent the deleterious effects of hypoxia (1% O2) on the L6 myoblast proliferation and enhances the myoblast differentiation when exposed to 21% O2. TBARS are reduced in 5% O2 compared to both 21% and 1% O2.Conclusion: The glutathione peroxidase activity and p110-PI3K/Thr308-Akt are both modulated in the same way by oxygen

    Oxygen Modulates the Glutathione Peroxidase Activity during the L6 Myoblast Early Differentiation Process

    No full text
    Aim: This work aims to study the regulation of the glutathione peroxidase and catalase activities in myoblasts from the L6 line exposed to 21%, 5% and 1% O2 during the cell differentiation. Material and Methods: Rat L6 myoblasts were grown in 1%, 5% or 21% O2 in the presence or absence of N-acetyl cysteine. The cell proliferation was evaluated by determining the doubling time and kinetics of cultures by counting cells. The cell differentiation was analyzed by determining the myogenic fusion index using antibodies against the myosin heavy chain. The glutathione peroxidase and catalase activities were assayed. The p110-PI3K/Thr308-Akt pathway was studied using western blotting. The oxidative status of the cells was carried out by determining TBARS. Results: 5% O2 improves the glutathione peroxidase activity, p110-PI3K/Thr308-Akt pathway and differentiation while 1% O2 alters all these parameters compared to 21% O2. NAC (0.5 mM) can prevent the deleterious effects of hypoxia (1% O2) on the L6 myoblast proliferation and enhances the myoblast differentiation when exposed to 21% O2. TBARS are reduced in 5% O2 compared to both 21% and 1% O2. Conclusion: The glutathione peroxidase activity and p110-PI3K/Thr308-Akt are both modulated in the same way by oxygen

    Information et communication scientifique à l'heure du numérique

    No full text
    Communiquer la science : une activité désormais centrale, aux formes diverses et engageant de multiples acteurs, compétences et supports. Cet Essentiel propose des regards croisés interdisciplinaires pour explorer les enjeux et les évolutions récentes de l'information et de la communication scientifiques à l'heure du numérique. Science ouverte, science 2.0, déluge informationnel, communication institutionnelle des laboratoires et instituts de recherche, blogs de chercheurs, plateformes participatives et collaboratives, accès pour tous à la culture scientifique... autant de thèmes émergents qui concernent les chercheurs et professionnels de l'information et de la communication, et interrogent également les relations science/société et leurs transformations actuelles
    corecore