19 research outputs found
Strep-tag® II for One-Step Affinity Purification of Active bHLHzip Domain of Human c-Myc
The c-Myc protein, the product of the cmyc protooncogene, is a nuclear phosphoprotein with DNA-binding properties when heterodimerized with the Max protein. It contains an amino-terminal transcriptional activation domain and a carboxy-terminal basic helix-loop-helix leucine zipper (bHLHzip) domain that directs heterodimerization and promotes DNA binding. Here, we describe the isolation of the bHLHzip domain of human c-Myc with a technique for efficient single-step purification. Using a Cterminal Strep-tag® II affinity peptide and a novel Streptactin-Sepharose® matrix, elution is performed under mild conditions by competition with the biotin analog desthiobiotin. No significant influence of the affinity tag on the activity of the bHLHzip domain was observed when the fusion protein was subjected to glutathione S-transferase (GST) pull-down assays for investigating its in vitro-binding properties with GST-Max. The use of the C-terminal Strep-tag II was shown to be more suitable for obtaining pure product fractions than use of the N-terminal GST affinity tag
Production of the Novel Lipopeptide Antibiotic Trifluorosurfactin via Precursor-Directed Biosynthesis
Incorporation of fluorine into antibiotics can moderate their biological activity, lipophilicity and metabolic stability. The introduction of fluorine into an antimicrobial lipopeptide produced by Bacillus sp. CS93 via precursor-directed biosynthesis is described. The lipopeptide surfactin is synthesised non-ribosomally by various Bacillus species and is known for its biological activity. Administering 4,4,4-trifluoro-dl-valine to cultures of Bacillus sp. CS93 results in the formation of trifluorosurfactin in quantities sufficient for detection by LC–MS/MS. 19F NMR analysis of the culture supernatant revealed that the bulk of the fluorinated amino acid was transformed and thus was unavailable for incorporation into surfactin. Detection of ammonia, and MS analysis indicated that the transformation proceeds with deamination and reduction of the keto acid, yielding 4,4,4-trifluoro-2-hydroxy-3-methylbutanoic acid.IRCSET Enterprise PartnershipAuthor has checked copyrightSB. 30/4/201