12 research outputs found

    Anthracimycin activity against contemporary methicillin-resistant Staphylococcus aureus.

    Get PDF
    Anthracimycin is a recently discovered novel marine-derived compound with activity against Bacillus anthracis. We tested anthracimycin against an expanded panel of Staphylococcus aureus strains in vitro and in vivo. All strains of S. aureus tested, including methicillin-susceptible, methicillin-resistant (MRSA) and vancomycin-resistant strains of S. aureus, were susceptible to anthracimycin at MIC values of ⩽0.25 mg l(-1). Although its postantibiotic effects were minimal, anthracimycin exhibited potent and rapid bactericidal activity, with a >4-log kill of USA300 MRSA within 3 h at five times its MIC. At concentrations significantly below the MIC, anthracimycin slowed MRSA growth and potentiated the bactericidal activity of the human cathelicidin, LL-37. The bactericidal activity of anthracimycin was somewhat mitigated in the presence of 20% human serum, and the compound was minimally toxic to human cells, with an IC50 (inhibitory concentration 50)=70 mg l(-1) against human carcinoma cells. At concentrations near the MIC, anthracimycin inhibited S. aureus nucleic acid synthesis as determined by optimized macromolecular synthesis methodology, with inhibition of DNA and RNA synthesis occurring in the absence of DNA intercalation. Anthracimycin at a single dose of 1 or 10 mg kg(-1) was able to protect mice from MRSA-induced mortality in a murine peritonitis model of infection. Anthracimycin provides an interesting new scaffold for future development of a novel MRSA antibiotic

    Marinopyrrole Derivatives as Potential Antibiotic Agents against Methicillin-Resistant Staphylococcus aureus (I)

    Get PDF
    Infections caused by drug-resistant pathogens are on the rise. The ongoing spread of methicillin-resistant Staphylococcus aureus (MRSA) strains exemplifies the urgent need for new antibiotics. The marine natural product, marinopyrrole A, was previously shown to have potent antibiotic activity against Gram-positive pathogens, including MRSA. However, its minimum inhibitory concentration (MIC) against MRSA was increased by >500 fold in the presence of 20% human serum, thus greatly limiting therapeutic potential. Here we report our discovery of a novel derivative of marinopyrrole A, designated 1a, featuring a 2–4 fold improved MIC against MRSA and significantly less susceptibility to serum inhibition. Importantly, compound 1a displayed rapid and concentration-dependent killing of MRSA. Compared to the natural product counterpart, compound 1a provides an important natural product based scaffold for further Structure Activity Relationship (SAR) and optimization

    Recent progress in understanding coxsackievirus replication, dissemination, and pathogenesis

    Get PDF
    AbstractCoxsackieviruses (CVs) are relatively common viruses associated with a number of serious human diseases, including myocarditis and meningo-encephalitis. These viruses are considered cytolytic yet can persist for extended periods of time within certain host tissues requiring evasion from the host immune response and a greatly reduced rate of replication. A member of Picornaviridae family, CVs have been historically considered non-enveloped viruses – although recent evidence suggest that CV and other picornaviruses hijack host membranes and acquire an envelope. Acquisition of an envelope might provide distinct benefits to CV virions, such as resistance to neutralizing antibodies and efficient nonlytic viral spread. CV exhibits a unique tropism for progenitor cells in the host which may help to explain the susceptibility of the young host to infection and the establishment of chronic disease in adults. CVs have also been shown to exploit autophagy to maximize viral replication and assist in unconventional release from target cells. In this article, we review recent progress in clarifying virus replication and dissemination within the host cell, identifying determinants of tropism, and defining strategies utilized by the virus to evade the host immune response. Also, we will highlight unanswered questions and provide future perspectives regarding the potential mechanisms of CV pathogenesis

    Marinopyrrole Derivatives as Potential Antibiotic Agents against Methicillin-Resistant Staphylococcus aureus (III)

    Get PDF
    The marine natural product, marinopyrrole A (1), was previously shown to have significant antibiotic activity against Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus (MRSA). Although compound (1) exhibits a significant reduction in MRSA activity in the presence of human serum, we have identified key modifications that partially restore activity. We previously reported our discovery of a chloro-derivative of marinopyrrole A (1a) featuring a 2–4 fold improved minimum inhibitory concentration (MIC) against MRSA, significantly less susceptibility to serum inhibition and rapid and concentration-dependent killing of MRSA. Here, we report a novel fluoro-derivative of marinopyrrole A (1e) showing an improved profile of potency, less susceptibility to serum inhibition, as well as rapid and concentration-dependent killing of MRSA

    Nafcillin enhances innate immune-mediated killing of methicillin-resistant Staphylococcus aureus

    No full text
    UnlabelledBased on in vitro synergy studies, the addition of nafcillin to daptomycin was used to treat refractory methicillin-resistant Staphylococcus aureus (MRSA) bacteremia. Daptomycin is a de facto cationic antimicrobial peptide in vivo, with antistaphylococcal mechanisms reminiscent of innate host defense peptides (HDPs). In this study, the effects of nafcillin on HDP activity against MRSA were examined in vitro and in vivo. Exposures to β-lactam antimicrobials in general, and nafcillin in particular, significantly increased killing of S. aureus by selected HDPs from keratinocytes, neutrophils, and platelets. This finding correlated with enhanced killing of MRSA by whole blood, neutrophils, and keratinocytes after growth in nafcillin. Finally, nafcillin pretreatment ex vivo reduced MRSA virulence in a murine subcutaneous infection model. Despite the lack of direct activity against MRSA, these studies show potent, consistent, and generalized nafcillin-mediated "sensitization" to increased killing of MRSA by various components of the innate host response. The use of nafcillin as adjunctive therapy in MRSA bacteremia merits further study and should be considered in cases refractory to standard therapy.Key messagesNafcillin has been used as adjunctive therapy to clear persistent MRSA bacteremia. Nafcillin enhances killing of MRSA by a cadre of innate host defense peptides. Nafcillin increases binding of human cathelicidin LL-37 to the MRSA membrane. Nafcillin enhances killing of MRSA by neutrophils. Nafcillin reduces virulence of MRSA in a murine subcutaneous infection model

    Nafcillin enhances innate immune-mediated killing of methicillin-resistant Staphylococcus aureus

    No full text
    Based on in vitro synergy studies, the addition of nafcillin to daptomycin was used to treat refractory methicillin-resistant Staphylococcus aureus (MRSA) bacteremia. Daptomycin is a de facto cationic antimicrobial peptide in vivo, with antistaphylococcal mechanisms reminiscent of innate host defense peptides (HDPs). In this study, the effects of nafcillin on HDP activity against MRSA were examined in vitro and in vivo. Exposures to β-lactam antimicrobials in general, and nafcillin in particular, significantly increased killing of S. aureus by selected HDPs from, keratinocytes, neutrophils and platelets. This finding correlated with enhanced killing of MRSA by whole blood, neutrophils and keratinocytes after growth in nafcillin. Finally, nafcillin pretreatment ex vivo reduced MRSA virulence in a murine subcutaneous infection model. Despite the lack of direct activity against MRSA, these studies show potent, consistent, and generalized nafcillin-mediated ‘sensitization’ to increased killing of MRSA by various components of the innate host response. The use of nafcillin as adjunctive therapy in MRSA bacteremia merits further study and should be considered in cases refractory to standard therapy
    corecore