56 research outputs found

    Bulk Incorporation with 4‐Methylphenethylammonium Chloride for Efficient and Stable Methylammonium‐Free Perovskite and Perovskite‐Silicon Tandem Solar Cells

    Get PDF
    Methylammonium (MA)-free perovskite solar cells have the potential for better thermal stability than their MA-containing counterparts. However, the efficiency of MA-free perovskite solar cells lags behind due to inferior bulk quality. In this work, 4-methylphenethylammonium chloride (4M-PEACl) is added into a MA-free perovskite precursor, which results in greatly enhanced bulk quality. The perovskite crystal grains are significantly enlarged, and defects are suppressed by a factor of four upon the incorporation of an optimal concentration of 4M-PEACl. Quasi-2D perovskites are formed and passivate defects at the grain boundaries of the perovskite crystals. Furthermore, the perovskite surface chemistry is modified, resulting in surface energies more favorable for hole extraction. This facile approach leads to a steady state efficiency of 23.7% (24.2% in reverse scan, 23.0% in forward scan) for MA-free perovskite solar cells. The devices also show excellent light stability, retaining more than 93% of the initial efficiency after 1000 h of constant illumination in a nitrogen environment. In addition, a four-terminal mechanically stacked perovskite-silicon tandem solar cell with champion efficiency of 30.3% is obtained using this MA-free composition. The encapsulated tandem devices show excellent operational stability, retaining more than 98% of the initial performance after 42 day/night cycles in an ambient atmosphere

    TextANIMAR: Text-based 3D Animal Fine-Grained Retrieval

    Full text link
    3D object retrieval is an important yet challenging task, which has drawn more and more attention in recent years. While existing approaches have made strides in addressing this issue, they are often limited to restricted settings such as image and sketch queries, which are often unfriendly interactions for common users. In order to overcome these limitations, this paper presents a novel SHREC challenge track focusing on text-based fine-grained retrieval of 3D animal models. Unlike previous SHREC challenge tracks, the proposed task is considerably more challenging, requiring participants to develop innovative approaches to tackle the problem of text-based retrieval. Despite the increased difficulty, we believe that this task has the potential to drive useful applications in practice and facilitate more intuitive interactions with 3D objects. Five groups participated in our competition, submitting a total of 114 runs. While the results obtained in our competition are satisfactory, we note that the challenges presented by this task are far from being fully solved. As such, we provide insights into potential areas for future research and improvements. We believe that we can help push the boundaries of 3D object retrieval and facilitate more user-friendly interactions via vision-language technologies.Comment: arXiv admin note: text overlap with arXiv:2304.0573

    The 2nd Workshop on Maritime Computer Vision (MaCVi) 2024

    Full text link
    The 2nd Workshop on Maritime Computer Vision (MaCVi) 2024 addresses maritime computer vision for Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicles (USV). Three challenges categories are considered: (i) UAV-based Maritime Object Tracking with Re-identification, (ii) USV-based Maritime Obstacle Segmentation and Detection, (iii) USV-based Maritime Boat Tracking. The USV-based Maritime Obstacle Segmentation and Detection features three sub-challenges, including a new embedded challenge addressing efficicent inference on real-world embedded devices. This report offers a comprehensive overview of the findings from the challenges. We provide both statistical and qualitative analyses, evaluating trends from over 195 submissions. All datasets, evaluation code, and the leaderboard are available to the public at https://macvi.org/workshop/macvi24.Comment: Part of 2nd Workshop on Maritime Computer Vision (MaCVi) 2024 IEEE Xplore submission as part of WACV 202

    The global response: How cities and provinces around the globe tackled Covid-19 outbreaks in 2021

    Get PDF
    Background: Tackling the spread of COVID-19 remains a crucial part of ending the pandemic. Its highly contagious nature and constant evolution coupled with a relative lack of immunity make the virus difficult to control. For this, various strategies have been proposed and adopted including limiting contact, social isolation, vaccination, contact tracing, etc. However, given the heterogeneity in the enforcement of these strategies and constant fluctuations in the strictness levels of these strategies, it becomes challenging to assess the true impact of these strategies in controlling the spread of COVID-19.Methods: In the present study, we evaluated various transmission control measures that were imposed in 10 global urban cities and provinces in 2021 Bangkok, Gauteng, Ho Chi Minh City, Jakarta, London, Manila City, New Delhi, New York City, Singapore, and Tokyo.Findings: Based on our analysis, we herein propose the population-level Swiss cheese model for the failures and pit-falls in various strategies that each of these cities and provinces had. Furthermore, whilst all the evaluated cities and provinces took a different personalized approach to managing the pandemic, what remained common was dynamic enforcement and monitoring of breaches of each barrier of protection. The measures taken to reinforce the barriers were adjusted continuously based on the evolving epidemiological situation.Interpretation: How an individual city or province handled the pandemic profoundly affected and determined how the entire country handled the pandemic since the chain of transmission needs to be broken at the very grassroot level to achieve nationwide control

    Comparative stable walking gait optimization for small-sized biped robot using meta-heuristic optimization algorithms

    No full text
    This paper proposes a new way to optimize the biped walking gait design for biped robots that permits stable and robust stepping with pre-set foot lifting magnitude. The new meta-heuristic CFO-Central Force Optimization algorithm is initiatively applied to optimize the biped gait parameters as to ensure to keep biped robot walking robustly and steadily. The efficiency of the proposed method is compared with the GA-Genetic Algorithm, PSO-Particle Swarm Optimization and Modified Differential Evolution algorithm (MDE). The simulated and experimental results carried on the prototype small-sized humanoid robot demonstrate that the novel meta-heuristic CFO algorithm offers an efficient and stable walking gait for biped robots with respect to a pre-set of foot-lift height value

    ADPKD is associated with a central peripheral defect in osmoregulation

    No full text

    Nontuberculous mycobacterial pulmonary infection in renal transplant recipients

    No full text
    The most common presentations of nontuberculous mycobacterial infections in kidney transplant recipients (KTR) are cutaneous and disseminated diseases. Pleuropulmonary infection not associated with disseminated disease is rare. Its diagnosis can be difficult, requiring a combination of clinical, radiological, and bacteriological criteria. We report on a Mycobacterium avium complex pulmonary infection in a KTR with underlying chronic obstructive pulmonary disease. Chest computed tomography showed an excavated lesion of the right upper lobe, similar to a typical lesion of pulmonary tuberculosis. Evolution was favorable with multiple-drug therapy including rifampicin, ethambutol, and clarithromycin, along with a slight reduction in immunosuppression. We review the literature and discuss the epidemiology, diagnosis, management, and follow-up of this uncommon post-transplant complication
    corecore