479 research outputs found

    Quantum Diffusion in Separable d-Dimensional Quasiperiodic Tilings

    Full text link
    We study the electronic transport in quasiperiodic separable tight-binding models in one, two, and three dimensions. First, we investigate a one-dimensional quasiperiodic chain, in which the atoms are coupled by weak and strong bonds aligned according to the Fibonacci chain. The associated d-dimensional quasiperiodic tilings are constructed from the product of d such chains, which yields either the square/cubic Fibonacci tiling or the labyrinth tiling. We study the scaling behavior of the mean square displacement and the return probability of wave packets with respect to time. We also discuss results of renormalization group approaches and lower bounds for the scaling exponent of the width of the wave packet.Comment: 6 pages, 4 figures, conference proceedings Aperiodic 2012 (Cairns

    Determination of the laser-induced damage threshold of polymer optical fibers

    Get PDF
    Investigating the properties of manufactured polymer optical fibers is essential to determine proper areas of application. Using pulsed laser radiation, especially with respect to laser activity in optical fibers, the maximum acceptable transmittable energy without inducing damage is of particular interest. Therefore, this work is related to laser-induced damage in polymer optical fibers at a wavelength of 532 nm and a pulse duration of 7.3 ns. In particular, the influence of the coupling condition on the transmittable pulse energy and the damage behavior applying an R-on-1 test procedure are analyzed in this study. The obtained results give information about the long-Term behavior and will be used to optimize the manufacturing process. © COPYRIGHT SPI

    Wave Functions, Quantum Diffusion, and Scaling Exponents in Golden-Mean Quasiperiodic Tilings

    Full text link
    We study the properties of wave functions and the wave-packet dynamics in quasiperiodic tight-binding models in one, two, and three dimensions. The atoms in the one-dimensional quasiperiodic chains are coupled by weak and strong bonds aligned according to the Fibonacci sequence. The associated d-dimensional quasiperiodic tilings are constructed from the direct product of d such chains, which yields either the hypercubic tiling or the labyrinth tiling. This approach allows us to consider rather large systems numerically. We show that the wave functions of the system are multifractal and that their properties can be related to the structure of the system in the regime of strong quasiperiodic modulation by a renormalization group (RG) approach. We also study the dynamics of wave packets to get information about the electronic transport properties. In particular, we investigate the scaling behaviour of the return probability of the wave packet with time. Applying again the RG approach we show that in the regime of strong quasiperiodic modulation the return probability is governed by the underlying quasiperiodic structure. Further, we also discuss lower bounds for the scaling exponent of the width of the wave packet and propose a modified lower bound for the absolute continuous regime.Comment: 25 pages, 13 figure

    Concurrent Sessions B: Fish Physiology and Fishway Passage Success - Comparative Physiology and Relative Swimming Performance of Three Redhorse (Moxostoma Spp.) Species: Associations with Fishways

    Get PDF
    Fishways have been constructed to maintain longitudinal connectivity for fish in fluvial systems impacted by barriers but there are relatively few studies of their biological effectiveness. Trend analysis of the CanFishPass fishway database showed that only 9% of Canadian fishways have been studied using methods that enable proper evaluation of biological effectiveness. A biological evaluation of the Vianney-Legendre fishway in Quebec for the passage of three redhorse species (Moxostoma anisurum, M. carinatum, M. macrolepidotum; silver, river and shorthead redhorse respectively) showed attraction efficiencies of 51%, 12%, 50%, respectively, and passage efficiencies of 88%, 50% and 69% respectively. For all species, failures in the fishway were likely to occur beforethe second turning basin in the fishway (84% of failures). Shorthead redhorse had higher maximum metabolic rates and were faster swimmers than silver and river redhorse. River redhorse recovered their lactate and glucose concentrations more quickly than silver and shorthead redhorse, and river redhorse were second in terms of metabolic recovery and swim speed. Fish sampled from the top of the fishway had nearly identical lactate, glucose and pH values compared to control fish. Additional research is required to understand how organismal performance, environmental conditions, and other factors interact with fishway designs to dictate which fish are successful and to inform research of future fishways. Our research suggests that there may be an opportunity for a rapid assessment approach where manual chasing and sampling of fish from the top of the fishway are used to determine which species (or sizes of fish) are exceeding their physiological capacity during passage

    The Efficiency of Grain Alignment in Dense Interstellar Clouds: A Reassessment of Constraints from Near Infrared Polarization

    Full text link
    A detailed study of interstellar polarization efficiency toward molecular clouds is used to attempt discrimination between grain alignment mechanisms in dense regions of the ISM. Background field stars are used to probe polarization efficiency in quiescent regions of dark clouds, yielding a dependence on visual extinction well-represented by a power law. No significant change in this behavior is observed in the transition region between the diffuse outer layers and dense inner regions of clouds, where icy mantles are formed, and we conclude that mantle formation has little or no effect on the efficiency of grain alignment. Young stellar objects generally exhibit greater polarization efficiency compared with field stars at comparable extinctions, displaying enhancements by factors of up to 6. Of the proposed alignment mechanisms, that based on radiative torques appears best able to explain the data. The attenuated external radiation field accounts for the observed polarization in quiescent regions, and radiation from the embedded stars themselves may enhance alignment in the lines of sight to YSOs. Enhancements in polarization efficiency observed in the ice features toward several YSOs are of greatest significance, as they demonstrate efficient alignment in cold molecular clouds associated with star formation

    Generalized Inverse Participation Numbers in Metallic-Mean Quasiperiodic Systems

    Full text link
    From the quantum mechanical point of view, the electronic characteristics of quasicrystals are determined by the nature of their eigenstates. A practicable way to obtain information about the properties of these wave functions is studying the scaling behavior of the generalized inverse participation numbers Zq∼N−Dq(q−1)Z_q \sim N^{-D_q(q-1)} with the system size NN. In particular, we investigate dd-dimensional quasiperiodic models based on different metallic-mean quasiperiodic sequences. We obtain the eigenstates of the one-dimensional metallic-mean chains by numerical calculations for a tight-binding model. Higher dimensional solutions of the associated generalized labyrinth tiling are then constructed by a product approach from the one-dimensional solutions. Numerical results suggest that the relation Dqdd=dDq1dD_q^{d\mathrm{d}} = d D_q^\mathrm{1d} holds for these models. Using the product structure of the labyrinth tiling we prove that this relation is always satisfied for the silver-mean model and that the scaling exponents approach this relation for large system sizes also for the other metallic-mean systems.Comment: 7 pages, 3 figure

    Population demographics of golden perch (Macquaria ambigua) in the Darling River prior to a major fish kill: A guide for rehabilitation

    Get PDF
    An understanding of population demographics and life history processes is integral to the rehabilitation of fish populations. In Australia's highly modified Murray-Darling Basin, native fish are imperilled and fish deaths in the Darling River in 2018-19 highlighted their vulnerability. Golden perch (Macquaria ambigua) is a long-lived percichthyid that was conspicuous in the fish kills. To guide population rehabilitation in the Darling River, pre-fish kill age structure, provenance and movement of golden perch were explored using otolith microstructure and chemistry (87Sr/86Sr). Across the Lower and Mid-Darling River, recruitment was episodic, with dominant cohorts associated with years characterised by elevated discharge. There was substantial variability in age structure, recruitment source and movement patterns between the Lower and Mid-Darling River. In the Mid-Darling River, tributaries were an important recruitment source, whereas in the Lower Darling fish predominantly originated in the Darling River itself. Downstream movement of juveniles, upstream migration of adults and return movements to natal locations were important drivers of population structure. Restoring resilient golden perch populations in the Darling River will be reliant on mitigating barriers to movement, promoting a connected mosaic of recruitment sources and reinstating the hydrological and hydraulic factors associated with spawning, recruitment and dispersal. Globally, increasing water resource development and climate change will necessitate such integrated approaches to the management of long-lived migratory riverine fishes. © 2022 Journal Compilatio

    Size, growth and mortality of riverine golden perch (Macquaria ambigua) across a latitudinal gradient

    Get PDF
    Effective fisheries management requires fish size, growth and mortality information representative of the population and location of interest. Golden perch Macquaria ambigua is long lived, potamodromous and widespread in the Murray–Darling Basin (MDB), Australia. Using a sample spanning 13 river systems and 10° of latitude, we examined whether the maximum size of golden perch differed by latitude and whether growth and mortality varied between northern and southern MDB regions. The length, weight and age ranges of golden perch sampled (n = 873) were 52–559 mm, 2–3201 g and 0+ to 26+ years respectively, and maximum length and weight were unaffected by latitude. Length and age–length distributions represented by age–length keys varied by region, with greater variability in age-at-length and a larger proportion of smaller individuals in northern MDB rivers, which generally exhibit greater variability in discharge. Growth and mortality rates were similar between regions, and an MDB-wide von Bertalanffy growth model (L∞ = 447, k = 0.32 and t0 = –0.51) and instantaneous mortality rate (Z = 0.20) best described the data. An MDB-wide length–weight equation also provided the best fit (W = 6.76 × 10–6 L3.12). Our data suggest that the MDB can be treated as one management unit in terms of golden perch maximum size, growth and mortality parameters
    • …
    corecore