79 research outputs found

    Deep Boosted Regression for MR to CT Synthesis

    Get PDF
    Attenuation correction is an essential requirement of positron emission tomography (PET) image reconstruction to allow for accurate quantification. However, attenuation correction is particularly challenging for PET-MRI as neither PET nor magnetic resonance imaging (MRI) can directly image tissue attenuation properties. MRI-based computed tomography (CT) synthesis has been proposed as an alternative to physics based and segmentation-based approaches that assign a population-based tissue density value in order to generate an attenuation map. We propose a novel deep fully convolutional neural network that generates synthetic CTs in a recursive manner by gradually reducing the residuals of the previous network, increasing the overall accuracy and generalisability, while keeping the number of trainable parameters within reasonable limits. The model is trained on a database of 20 pre-acquired MRI/CT pairs and a four-fold random bootstrapped validation with a 80:20 split is performed. Quantitative results show that the proposed framework outperforms a state-of-the-art atlas-based approach decreasing the Mean Absolute Error (MAE) from 131HU to 68HU for the synthetic CTs and reducing the PET reconstruction error from 14.3% to 7.2%.Comment: Accepted at SASHIMI201

    Towards accurate partial volume correction in (99m}^Tc oncology SPECT: perturbation for case-specific resolution estimation

    Get PDF
    BACKGROUND: Currently, there is no consensus on the optimal partial volume correction (PVC) algorithm for oncology imaging. Several existing PVC methods require knowledge of the reconstructed resolution, usually as the point spread function (PSF)-often assumed to be spatially invariant. However, this is not the case for SPECT imaging. This work aimed to assess the accuracy of SPECT quantification when PVC is applied using a case-specific PSF. METHODS: Simulations of SPECT [Formula: see text]Tc imaging were performed for a range of activity distributions, including those replicating typical clinical oncology studies. Gaussian PSFs in reconstructed images were estimated using perturbation with a small point source. Estimates of the PSF were made in situations which could be encountered in a patient study, including; different positions in the field of view, different lesion shapes, sizes and contrasts, noise-free and noisy data. Ground truth images were convolved with the perturbation-estimated PSF, and with a PSF reflecting the resolution at the centre of the field of view. Both were compared with reconstructed images and the root-mean-square error calculated to assess the accuracy of the estimated PSF. PVC was applied using Single Target Correction, incorporating the perturbation-estimated PSF. Corrected regional mean values were assessed for quantitative accuracy. RESULTS: Perturbation-estimated PSF values demonstrated dependence on the position in the Field of View and the number of OSEM iterations. A lower root mean squared error was observed when convolution of the ground truth image was performed with the perturbation-estimated PSF, compared with convolution using a different PSF. Regional mean values following PVC using the perturbation-estimated PSF were more accurate than uncorrected data, or data corrected with PVC using an unsuitable PSF. This was the case for both simple and anthropomorphic phantoms. For the simple phantom, regional mean values were within 0.7% of the ground truth values. Accuracy improved after 5 or more OSEM iterations (10 subsets). For the anthropomorphic phantoms, post-correction regional mean values were within 1.6% of the ground truth values for noise-free uniform lesions. CONCLUSION: Perturbation using a simulated point source could potentially improve quantitative SPECT accuracy via the application of PVC, provided that sufficient reconstruction iterations are used

    Improved MR to CT synthesis for PET/MR attenuation correction using Imitation Learning

    Full text link
    The ability to synthesise Computed Tomography images - commonly known as pseudo CT, or pCT - from MRI input data is commonly assessed using an intensity-wise similarity, such as an L2-norm between the ground truth CT and the pCT. However, given that the ultimate purpose is often to use the pCT as an attenuation map (ÎĽ\mu-map) in Positron Emission Tomography Magnetic Resonance Imaging (PET/MRI), minimising the error between pCT and CT is not necessarily optimal. The main objective should be to predict a pCT that, when used as ÎĽ\mu-map, reconstructs a pseudo PET (pPET) which is as close as possible to the gold standard PET. To this end, we propose a novel multi-hypothesis deep learning framework that generates pCTs by minimising a combination of the pixel-wise error between pCT and CT and a proposed metric-loss that itself is represented by a convolutional neural network (CNN) and aims to minimise subsequent PET residuals. The model is trained on a database of 400 paired MR/CT/PET image slices. Quantitative results show that the network generates pCTs that seem less accurate when evaluating the Mean Absolute Error on the pCT (69.68HU) compared to a baseline CNN (66.25HU), but lead to significant improvement in the PET reconstruction - 115a.u. compared to baseline 140a.u.Comment: Aceppted at SASHIMI201

    The tumor-associated antigen RHAMM (HMMR/CD168) is expressed by monocyte-derived dendritic cells and presented to T cells

    Get PDF
    We formerly demonstrated that vaccination with Wilms' tumor 1 (WT1)-loaded autologous monocyte-derived dendritic cells (mo-DCs) can be a well-tolerated effective treatment in acute myeloid leukemia (AML) patients. Here, we investigated whether we could introduce the receptor for hyaluronic acid-mediated motility (RHAMM/HMMR/CD168), another clinically relevant tumor-associated antigen, into these mo-DCs through mRNA electroporation and elicit RHAMM-specific immune responses. While RHAMM mRNA electroporation significantly increased RHAMM protein expression by mo-DCs, our data indicate that classical mo-DCs already express and present RHAMM at sufficient levels to activate RHAMM-specific T cells, regardless of electroporation. Moreover, we found that RHAMM-specific T cells are present at vaccination sites in AML patients. Our findings implicate that we and others who are using classical mo-DCs for cancer immunotherapy are already vaccinating against RHAMM

    Triple modality image reconstruction of PET data using SPECT, PET, CT information increases lesion uptake in images of patients treated with radioembolization with [Formula: see text] micro-spheres.

    Get PDF
    PURPOSE: Nuclear medicine imaging modalities like computed tomography (CT), single photon emission CT (SPECT) and positron emission tomography (PET) are employed in the field of theranostics to estimate and plan the dose delivered to tumors and the surrounding tissues and to monitor the effect of the therapy. However, therapeutic radionuclides often provide poor images, which translate to inaccurate treatment planning and inadequate monitoring images. Multimodality information can be exploited in the reconstruction to enhance image quality. Triple modality PET/SPECT/CT scanners are particularly useful in this context due to the easier registration process between images. In this study, we propose to include PET, SPECT and CT information in the reconstruction of PET data. The method is applied to Yttrium-90 ([Formula: see text]Y) data. METHODS: Data from a NEMA phantom filled with [Formula: see text]Y were used for validation. PET, SPECT and CT data from 10 patients treated with Selective Internal Radiation Therapy (SIRT) were used. Different combinations of prior images using the Hybrid kernelized expectation maximization were investigated in terms of VOI activity and noise suppression. RESULTS: Our results show that triple modality PET reconstruction provides significantly higher uptake when compared to the method used as standard in the hospital and OSEM. In particular, using CT-guided SPECT images, as guiding information in the PET reconstruction significantly increases uptake quantification on tumoral lesions. CONCLUSION: This work proposes the first triple modality reconstruction method and demonstrates up to 69% lesion uptake increase over standard methods with SIRT [Formula: see text]Y patient data. Promising results are expected for other radionuclide combination used in theranostic applications using PET and SPECT

    Pulmonary 18F-FDG uptake helps refine current risk stratification in idiopathic pulmonary fibrosis (IPF).

    Get PDF
    PURPOSE: There is a lack of prognostic biomarkers in idiopathic pulmonary fibrosis (IPF) patients. The objective of this study is to investigate the potential of 18F-FDG-PET/ CT to predict mortality in IPF. METHODS: A total of 113 IPF patients (93 males, 20 females, mean age ± SD: 70 ± 9 years) were prospectively recruited for 18F-FDG-PET/CT. The overall maximum pulmonary uptake of 18F-FDG (SUVmax), the minimum pulmonary uptake or background lung activity (SUVmin), and target-to-background (SUVmax/ SUVmin) ratio (TBR) were quantified using routine region-of-interest analysis. Kaplan-Meier analysis was used to identify associations of PET measurements with mortality. We also compared PET associations with IPF mortality with the established GAP (gender age and physiology) scoring system. Cox analysis assessed the independence of the significant PET measurement(s) from GAP score. We investigated synergisms between pulmonary 18F-FDG-PET measurements and GAP score for risk stratification in IPF patients. RESULTS: During a mean follow-up of 29 months, there were 54 deaths. The mean TBR ± SD was 5.6 ± 2.7. Mortality was associated with high pulmonary TBR (p = 0.009), low forced vital capacity (FVC; p = 0.001), low transfer factor (TLCO; p  4.9 was 24 months. Combining PET data with GAP data ("PET modified GAP score") refined the ability to predict mortality. CONCLUSIONS: A high pulmonary TBR is independently associated with increased risk of mortality in IPF patients

    Therapeutic vaccine in chronically Hiv-1-infected patients

    Get PDF
    Therapeutic vaccinations aim to re-educate human immunodeficiency virus (HIV)-1specific immune responses to achieve durable control of HIV-1 replication in virally suppressed infected individuals after antiretroviral therapy (ART) is interrupted. In a double blinded, placebocontrolled phase IIa multicenter study, we investigated the safety and immunogenicity of intranodal administration of the HIVACAT T cell Immunogen (HTI)-TriMix vaccine. It consists of naked mRNA based on cytotoxic T lymphocyte (CTL) targets of subdominant and conserved HIV-1 regions (HTI), in combination with mRNAs encoding constitutively active TLR4, the ligand for CD40 and CD70 as adjuvants (TriMix). We recruited HIV-1-infected individuals under stable ART. Study-arms HTI-TriMix, TriMix or Water for Injection were assigned in an 8:3:3 ratio. Participants received three vaccinations at weeks 0, 2, and 4 in an inguinal lymph node. Two weeks after the last vaccination, immunogenicity was evaluated using ELISpot assay. ART was interrupted at week 6 to study the effect of the vaccine on viral rebound. The vaccine was considered safe and well tolerated. Eighteen percent (n = 37) of the AEs were considered definitely related to the study product (grade 1 or 2). Three SAEs occurred: two were unrelated to the study product, and one was possibly related to ART interruption (ATI). ELISpot assays to detect T cell responses using peptides covering the HTI sequence showed no significant differences in immunogenicity between groups. There were no significant differences in viral load rebound dynamics after ATI between groups. The vaccine was safe and well tolerated. We were not able to demonstrate immunogenic effects of the vaccine

    IHIVARNA phase IIa, a randomized, placebo-controlled, double-blinded trial to evaluate the safety and immunogenicity of iHIVARNA-01 in chronically HIV-infected patients under stable combined antiretroviral therapy

    Get PDF
    Background: HIV therapeutic vaccination aims to improve the immune responses against HIV in order to control viral replication without the need for combined antiretroviral therapy (cART). iHIVARNA-01 is a novel vaccine combining mRNA delivery and T-cell immunogen (HTI) based on conserved targets of effective antiviral T-cell responses. In addition, it holds adequate stimuli required for activating antigen presenting cells (APC)s and co-activating specific T-cells (TriMix), including human CD40L, constitutively active TLR4 (caTLR4) and CD70. We propose that in-vivo targeting of dendritic cells (DCs) by direct administration of a HIV mRNA encoding these immune modulating proteins might be an attractive alternative to target DCs in vitro. Methods/design: This is a phase-IIa, randomized, double-blinded, placebo-controlled, multicenter study in chronically HIV-1 infected patients under stable cART. One of the three study arms is randomly allocated to subjects. Three vaccinations with either HIVACAT T-cell immunogen (HTI)-TriMix (iHIVARNA-01), TriMix or water for injection (WFI) (weeks 0, 2 and 4) are administered by intranodal injection in the inguinal region. Two weeks after the last immunization (week 6) cART is stopped for 12 weeks. The two primary endpoints are: (1) safety and tolerability of intranodal iHIVARNA-01 vaccination compared with TriMix or WFI and (2) induced immunogenicity, i.e., increase in the frequency of HIV-specific T-cell responses between baseline, week 6 and 12 weeks after treatment interruption in iHIVARNA-01-treated patients as compared to the control groups, immunized with TriMix
    • …
    corecore