2,110 research outputs found

    Does Policy Matter? On Governments’ Attempts to Control Unwanted Migration

    Get PDF
    Public policy making on asylum takes place in an environment of intense public scrutiny, strong institutional constraints and international collective action problems. By assessing the relative importance of key pull factors of international migration, this article explains why, even when controlling for their differences in size, some states receive a much larger number of asylum seekers than others. The analysis of 20 OECD countries for the period 1985-1999 further shows that some of the most high profile public policy measures—safe third country provisions, dispersal and voucher schemes—aimed, at least in part, at deterring unwanted migration and at addressing the highly unequal distribution of asylum burdens have often been ineffective. This is because the key determinants of an asylum seeker’s choice of host country are historical, economic and reputational factors that largely lie beyond the reach of asylum policy makers. Finally, the paper argues that the effectiveness of unilateral policy measures will be further undermined by multilateral attempts to harmonise restrictive policies and that current efforts such as those by the European Union will consolidate, rather than effectively address, existing disparities in the distribution of asylum burdens.public policy effectiveness, asylum, migration pull factors, deterrence, burden sharing, collective action problems, international co-operation, European Union

    Tables of Nuclear Cross Sections and Reaction Rates: an Addendum to the Paper "Astrophysical Reaction Rates from Statistical Model Calculations"

    Get PDF
    In a previous publication [Atomic Data and Nuclear Data Tables 75, 1 (2000)], we had given seven parameter analytical fits to theoretical reaction rates derived from nuclear cross sections calculated in the statistical model (Hauser-Feshbach formalism) for targets with 9<Z<84 (Ne to Bi) and for a mass range reaching the neutron and proton driplines. Reactions considered were (n,gamma), (n,p), (n,alpha), (p,gamma), (p,alpha), (alpha,gamma), and their inverse reactions. On public demand, we present here the theoretical nuclear cross sections and astrophysical reaction rates from which those rate fits were derived, and we provide these data as on-line electronic files. Corresponding to the fitted rates, two complete data sets are provided, one of which includes a phenomenological treatment of shell quenching for neutron-rich nuclei.Comment: 23 pages, 3 tables; scheduled to appear in Atomic Data Nuclear Data Tables 79 (2001) (September issue); preprint and data also available at http://quasar.physik.unibas.ch/~tommy/adndt.htm

    Global statistical model calculations and the role of isospin

    Get PDF
    An improved code for the calculation of astrophysical reaction rates in the statistical model is presented. It includes the possibility to study isospin effects. Such effects heavily affect capture rates involving self-conjugate nuclei and may also be found in reactions on other intermediate and heavy targets.Comment: 5 pages LaTeX, uses iopconf.sty, to appear in the proceedings of the 2nd Oak Ridge Symposium on Atomic and Nuclear Astrophysics, ed. A. Mezzacappa, IOP, in pres

    Silicon Burning II: Quasi-Equilibrium and Explosive Burning

    Full text link
    Having examined the application of quasi-equilibrium to hydrostatic silicon burning in Paper I of this series, Hix & Thielemann (1996), we now turn our attention to explosive silicon burning. Previous authors have shown that for material which is heated to high temperature by a passing shock and then cooled by adiabatic expansion, the results can be divided into three broad categories; \emph{incomplete burning}, \emph{normal freezeout} and \emph{α\alpha-rich freezeout}, with the outcome depending on the temperature, density and cooling timescale. In all three cases, we find that the important abundances obey quasi-equilibrium for temperatures greater than approximately 3 GK, with relatively little nucleosynthesis occurring following the breakdown of quasi-equilibrium. We will show that quasi-equilibrium provides better abundance estimates than global nuclear statistical equilibrium, even for normal freezeout and particularly for α\alpha-rich freezeout. We will also examine the accuracy with which the final nuclear abundances can be estimated from quasi-equilibrium.Comment: 27 pages, including 15 inline figures. LaTeX 2e with aaspp4 and graphicx packages. Accepted to Ap

    Computational Methods for Nucleosynthesis and Nuclear Energy Generation

    Get PDF
    This review concentrates on the two principle methods used to evolve nuclear abundances within astrophysical simulations, evolution via rate equations and via equilibria. Because in general the rate equations in nucleosynthetic applications form an extraordinarily stiff system, implicit methods have proven mandatory, leading to the need to solve moderately sized matrix equations. Efforts to improve the performance of such rate equation methods are focused on efficient solution of these matrix equations, by making best use of the sparseness of these matrices. Recent work to produce hybrid schemes which use local equilibria to reduce the computational cost of the rate equations is also discussed. Such schemes offer significant improvements in the speed of reaction networks and are accurate under circumstances where calculations with complete equilibrium fail.Comment: LaTeX2e with graphicx, 40 Pages with 5 embedded figures. To be published in Computational Astrophysics, The Journal of Computational and Applied Mathematics, eds. H. Riffert, K. Werne

    Silicon Burning I: Neutronization and the Physics of Quasi-Equilibrium

    Full text link
    As the ultimate stage of stellar nucleosynthesis, and the source of the iron peak nuclei, silicon burning is important to our understanding of the evolution of massive stars and supernovae. Our reexamination of silicon burning, using results gleaned from simulation work done with a large nuclear network (299 nuclei and more than 3000 reactions) and from independent calculations of equilibrium abundance distributions, offers new insights into the quasi-equilibrium mechanism and the approach to nuclear statistical equilibrium. We find that the degree to which the matter has been neutronized is of great importance, not only to the final products but also to the rate of energy generation and the membership of the quasi-equilibrium groups. A small increase in the global neutronization results in much larger free neutron fluences, increasing the abundances of more neutron-rich nuclei. As a result, incomplete silicon burning results in neutron richness among the isotopes of the iron peak much larger than the global neutronization would indicate. Finally, we briefly discuss the limitations and pitfalls of models for silicon burning currently employed within hydrodynamic models. In a forthcoming paper we will present a new approximation to the full nuclear network which preserves the most important features of the large nuclear network calculations at a significant improvement in computational speed. Such improved methods are ideally suited for hydrodynamic calculations which involve the production of iron peak nuclei, where the larger network calculation proves unmanageable.Comment: 44 pages of TeX with 25 Postscript figures, uses psfig.sty, To appear in the The Astrophysical Journal, April 1 1996. Complete PostScript version of the paper is also available from http://tycho.as.utexas.edu/~raph/Publications.htm
    • 

    corecore