1,831 research outputs found

    Modelling the evaporation of thin films of colloidal suspensions using Dynamical Density Functional Theory

    Get PDF
    Recent experiments have shown that various structures may be formed during the evaporative dewetting of thin films of colloidal suspensions. Nano-particle deposits of strongly branched `flower-like', labyrinthine and network structures are observed. They are caused by the different transport processes and the rich phase behaviour of the system. We develop a model for the system, based on a dynamical density functional theory, which reproduces these structures. The model is employed to determine the influences of the solvent evaporation and of the diffusion of the colloidal particles and of the liquid over the surface. Finally, we investigate the conditions needed for `liquid-particle' phase separation to occur and discuss its effect on the self-organised nano-structures

    Depinning of three-dimensional drops from wettability defects

    Full text link
    Substrate defects crucially influence the onset of sliding drop motion under lateral driving. A finite force is necessary to overcome the pinning influence even of microscale heterogeneities. The depinning dynamics of three-dimensional drops is studied for hydrophilic and hydrophobic wettability defects using a long-wave evolution equation for the film thickness profile. It is found that the nature of the depinning transition explains the experimentally observed stick-slip motion.Comment: 6 pages, 9 figures, submitted to ep

    Dynamical density functional theory for the dewetting of evaporating thin films of nanoparticle suspensions exhibiting pattern formation

    Get PDF
    Recent experiments have shown that the striking structure formation in dewetting films of evaporating colloidal nanoparticle suspensions occurs in an ultrathin `postcursor' layer that is left behind by a mesoscopic dewetting front. Various phase change and transport processes occur in the postcursor layer, that may lead to nanoparticle deposits in the form of labyrinthine, network or strongly branched `finger' structures. We develop a versatile dynamical density functional theory to model this system which captures all these structures and may be employed to investigate the influence of evaporation/condensation, nanoparticle transport and solute transport in a differentiated way. We highlight, in particular, the influence of the subtle interplay of decomposition in the layer and contact line motion on the observed particle-induced transverse instability of the dewetting front.Comment: 5 pages, 5 figure

    Dewetting of thin films on heterogeneous substrates: Pinning vs. coarsening

    Full text link
    We study a model for a thin liquid film dewetting from a periodic heterogeneous substrate (template). The amplitude and periodicity of a striped template heterogeneity necessary to obtain a stable periodic stripe pattern, i.e. pinning, are computed. This requires a stabilization of the longitudinal and transversal modes driving the typical coarsening dynamics during dewetting of a thin film on a homogeneous substrate. If the heterogeneity has a larger spatial period than the critical dewetting mode, weak heterogeneities are sufficient for pinning. A large region of coexistence between coarsening dynamics and pinning is found.Comment: 4 pages, 4 figure

    A lattice of microtraps for ultracold atoms based on patterned magnetic films

    Full text link
    We have realized a two dimensional permanent magnetic lattice of Ioffe-Pritchard microtraps for ultracold atoms. The lattice is formed by a single 300 nm magnetized layer of FePt, patterned using optical lithography. Our magnetic lattice consists of more than 15000 tightly confining microtraps with a density of 1250 traps/mm2^2. Simple analytical approximations for the magnetic fields produced by the lattice are used to derive relevant trap parameters. We load ultracold atoms into at least 30 lattice sites at a distance of approximately 10 μ\mum from the film surface. The present result is an important first step towards quantum information processing with neutral atoms in magnetic lattice potentials.Comment: 7 pages, 7 figure

    Solidification fronts in supercooled liquids: how rapid fronts can lead to disordered glassy solids

    Get PDF
    We determine the speed of a crystallisation (or more generally, a solidification) front as it advances into the uniform liquid phase after the system has been quenched into the crystalline region of the phase diagram. We calculate the front speed by assuming a dynamical density functional theory model for the system and applying a marginal stability criterion. Our results also apply to phase field crystal (PFC) models of solidification. As the solidification front advances into the unstable liquid phase, the density profile behind the advancing front develops density modulations and the wavelength of these modulations is a dynamically chosen quantity. For shallow quenches, the selected wavelength is precisely that of the crystalline phase and so well-ordered crystalline states are formed. However, when the system is deeply quenched, we find that this wavelength can be quite different from that of the crystal, so that the solidification front naturally generates disorder in the system. Significant rearrangement and ageing must subsequently occur for the system to form the regular well-ordered crystal that corresponds to the free energy minimum. Additional disorder is introduced whenever a front develops from random initial conditions. We illustrate these findings with results obtained from the PFC.Comment: 14 pages, 7 figure
    • …
    corecore