2,196 research outputs found
Thin film evolution equations from (evaporating) dewetting liquid layers to epitaxial growth
In the present contribution we review basic mathematical results for three
physical systems involving self-organising solid or liquid films at solid
surfaces. The films may undergo a structuring process by dewetting,
evaporation/condensation or epitaxial growth, respectively. We highlight
similarities and differences of the three systems based on the observation that
in certain limits all of them may be described using models of similar form,
i.e., time evolution equations for the film thickness profile. Those equations
represent gradient dynamics characterized by mobility functions and an
underlying energy functional.
Two basic steps of mathematical analysis are used to compare the different
system. First, we discuss the linear stability of homogeneous steady states,
i.e., flat films; and second the systematics of non-trivial steady states,
i.e., drop/hole states for dewetting films and quantum dot states in epitaxial
growth, respectively. Our aim is to illustrate that the underlying solution
structure might be very complex as in the case of epitaxial growth but can be
better understood when comparing to the much simpler results for the dewetting
liquid film. We furthermore show that the numerical continuation techniques
employed can shed some light on this structure in a more convenient way than
time-stepping methods.
Finally we discuss that the usage of the employed general formulation does
not only relate seemingly not related physical systems mathematically, but does
as well allow to discuss model extensions in a more unified way
Modelling the evaporation of thin films of colloidal suspensions using Dynamical Density Functional Theory
Recent experiments have shown that various structures may be formed during
the evaporative dewetting of thin films of colloidal suspensions. Nano-particle
deposits of strongly branched `flower-like', labyrinthine and network
structures are observed. They are caused by the different transport processes
and the rich phase behaviour of the system. We develop a model for the system,
based on a dynamical density functional theory, which reproduces these
structures. The model is employed to determine the influences of the solvent
evaporation and of the diffusion of the colloidal particles and of the liquid
over the surface. Finally, we investigate the conditions needed for
`liquid-particle' phase separation to occur and discuss its effect on the
self-organised nano-structures
Solidification in soft-core fluids: disordered solids from fast solidification fronts
Using dynamical density functional theory we calculate the speed of
solidification fronts advancing into a quenched two-dimensional model fluid of
soft-core particles. We find that solidification fronts can advance via two
different mechanisms, depending on the depth of the quench. For shallow
quenches, the front propagation is via a nonlinear mechanism. For deep
quenches, front propagation is governed by a linear mechanism and in this
regime we are able to determine the front speed via a marginal stability
analysis. We find that the density modulations generated behind the advancing
front have a characteristic scale that differs from the wavelength of the
density modulation in thermodynamic equilibrium, i.e., the spacing between the
crystal planes in an equilibrium crystal. This leads to the subsequent
development of disorder in the solids that are formed. For the one-component
fluid, the particles are able to rearrange to form a well-ordered crystal, with
few defects. However, solidification fronts in a binary mixture exhibiting
crystalline phases with square and hexagonal ordering generate solids that are
unable to rearrange after the passage of the solidification front and a
significant amount of disorder remains in the system.Comment: 18 pages, 14 fig
Depinning of three-dimensional drops from wettability defects
Substrate defects crucially influence the onset of sliding drop motion under
lateral driving. A finite force is necessary to overcome the pinning influence
even of microscale heterogeneities. The depinning dynamics of three-dimensional
drops is studied for hydrophilic and hydrophobic wettability defects using a
long-wave evolution equation for the film thickness profile. It is found that
the nature of the depinning transition explains the experimentally observed
stick-slip motion.Comment: 6 pages, 9 figures, submitted to ep
Dynamical density functional theory for the dewetting of evaporating thin films of nanoparticle suspensions exhibiting pattern formation
Recent experiments have shown that the striking structure formation in
dewetting films of evaporating colloidal nanoparticle suspensions occurs in an
ultrathin `postcursor' layer that is left behind by a mesoscopic dewetting
front. Various phase change and transport processes occur in the postcursor
layer, that may lead to nanoparticle deposits in the form of labyrinthine,
network or strongly branched `finger' structures. We develop a versatile
dynamical density functional theory to model this system which captures all
these structures and may be employed to investigate the influence of
evaporation/condensation, nanoparticle transport and solute transport in a
differentiated way. We highlight, in particular, the influence of the subtle
interplay of decomposition in the layer and contact line motion on the observed
particle-induced transverse instability of the dewetting front.Comment: 5 pages, 5 figure
Bifurcation analysis of the behavior of partially wetting liquids on a rotating cylinder
We discuss the behavior of partially wetting liquids on a rotating cylinder
using a model that takes into account the effects of gravity, viscosity,
rotation, surface tension and wettability. Such a system can be considered as a
prototype for many other systems where the interplay of spatial heterogeneity
and a lateral driving force in the proximity of a first- or second-order phase
transition results in intricate behavior. So does a partially wetting drop on a
rotating cylinder undergo a depinning transition as the rotation speed is
increased, whereas for ideally wetting liquids the behavior \bfuwe{only changes
quantitatively. We analyze the bifurcations that occur when the rotation speed
is increased for several values of the equilibrium contact angle of the
partially wetting liquids. This allows us to discuss how the entire bifurcation
structure and the flow behavior it encodes changes with changing wettability.
We employ various numerical continuation techniques that allow us to track
stable/unstable steady and time-periodic film and drop thickness profiles. We
support our findings by time-dependent numerical simulations and asymptotic
analyses of steady and time-periodic profiles for large rotation numbers
Dewetting of thin films on heterogeneous substrates: Pinning vs. coarsening
We study a model for a thin liquid film dewetting from a periodic
heterogeneous substrate (template). The amplitude and periodicity of a striped
template heterogeneity necessary to obtain a stable periodic stripe pattern,
i.e. pinning, are computed. This requires a stabilization of the longitudinal
and transversal modes driving the typical coarsening dynamics during dewetting
of a thin film on a homogeneous substrate. If the heterogeneity has a larger
spatial period than the critical dewetting mode, weak heterogeneities are
sufficient for pinning. A large region of coexistence between coarsening
dynamics and pinning is found.Comment: 4 pages, 4 figure
A lattice of microtraps for ultracold atoms based on patterned magnetic films
We have realized a two dimensional permanent magnetic lattice of
Ioffe-Pritchard microtraps for ultracold atoms. The lattice is formed by a
single 300 nm magnetized layer of FePt, patterned using optical lithography.
Our magnetic lattice consists of more than 15000 tightly confining microtraps
with a density of 1250 traps/mm. Simple analytical approximations for the
magnetic fields produced by the lattice are used to derive relevant trap
parameters. We load ultracold atoms into at least 30 lattice sites at a
distance of approximately 10 m from the film surface. The present result
is an important first step towards quantum information processing with neutral
atoms in magnetic lattice potentials.Comment: 7 pages, 7 figure
The relation of steady evaporating drops fed by an influx and freely evaporating drops
We discuss a thin film evolution equation for a wetting evaporating liquid on
a smooth solid substrate. The model is valid for slowly evaporating small
sessile droplets when thermal effects are insignificant, while wettability and
capillarity play a major role. The model is first employed to study steady
evaporating drops that are fed locally through the substrate. An asymptotic
analysis focuses on the precursor film and the transition region towards the
bulk drop and a numerical continuation of steady drops determines their fully
non-linear profiles.
Following this, we study the time evolution of freely evaporating drops
without influx for several initial drop shapes. As a result we find that drops
initially spread if their initial contact angle is larger than the apparent
contact angle of large steady evaporating drops with influx. Otherwise they
recede right from the beginning
Solidification fronts in supercooled liquids: how rapid fronts can lead to disordered glassy solids
We determine the speed of a crystallisation (or more generally, a
solidification) front as it advances into the uniform liquid phase after the
system has been quenched into the crystalline region of the phase diagram. We
calculate the front speed by assuming a dynamical density functional theory
model for the system and applying a marginal stability criterion. Our results
also apply to phase field crystal (PFC) models of solidification. As the
solidification front advances into the unstable liquid phase, the density
profile behind the advancing front develops density modulations and the
wavelength of these modulations is a dynamically chosen quantity. For shallow
quenches, the selected wavelength is precisely that of the crystalline phase
and so well-ordered crystalline states are formed. However, when the system is
deeply quenched, we find that this wavelength can be quite different from that
of the crystal, so that the solidification front naturally generates disorder
in the system. Significant rearrangement and ageing must subsequently occur for
the system to form the regular well-ordered crystal that corresponds to the
free energy minimum. Additional disorder is introduced whenever a front
develops from random initial conditions. We illustrate these findings with
results obtained from the PFC.Comment: 14 pages, 7 figure
- …