194 research outputs found

    Heavy Flavor Probes of Quark Matter

    Full text link
    A brief survey of the role of heavy flavors as a probe of the state of matter produced by high energy heavy ion collisions is presented. Specific examples include energy loss, initial state gluon saturation, thermalization and flow. The formation of quarkonium bound states from interactions in which multiple heavy quark-antiquark pairs are initially produced is examined in general. Results from statistical hadronization and kinetic models are summarized. New predictions from the kinetic model for J/Psi at RHIC are presented.Comment: Based on invited plenary talk at Strange Quark Matter 2004, Cape Town, South Africa, September 15-20, 2004, references completed, published in J. Phys. G: Nucl. Part. Phys. 31 (2005) S641-S64

    An Experimental Overview of Results Presented at SQM 2006

    Get PDF
    I have been asked to give an critical overview on the experimental results shown in the conference with a emphasis of what has been learned and the challenges that are ahead in trying to understand the physics of the strongly interacting quark-gluon plasma. I will not try to summarize all of the results presented, rather I will concentrate primarily on RHIC data from this conference. Throughout this summary, I will periodically review some of the previous results for those not familiar with the present state of the field.Comment: 15 pages, 12 Figure

    Kaon Weak Decays in Chiral Theories

    Get PDF
    The ten nonleptonic weak decays K→2πK \to 2\pi, K→3πK \to 3\pi, KL→2ÎłK_L \to 2\gamma, KS→2ÎłK_S \to 2\gamma, KL→π∘2ÎłK_L \to \pi^\circ 2\gamma, are predicted for a chiral pole model based on the linear sigma model theory which automatically satisfies the partial conservation of axial current (PCAC) hypothesis. These predictions, agreeing with data to the 5% level and containing no or at most one free parameter, are compared with the results of chiral perturbation theory (ChPT). The latter ChPT approach to one-loop level is known to contain at least four free parameters and then predicts a KLâ†’Ï€âˆ˜ÎłÎłK_L \to \pi^\circ \gamma\gamma rate which is 60% shy of the experimental value. This suggests that ChPT is an unsatisfactory approach towards predicting kaon weak decays.Comment: 12 pages, 8 eps figure

    J/ψJ/\psi production in PHENIX

    Full text link
    Heavy quarkonia production is expected to be sensitive to the formation of a quark gluon plasma (QGP). The PHENIX experiment has measured J/ψJ/\psi production at sNN=\sqrt{s_{NN}}=~200 GeV in Au+Au and Cu+Cu collisions, as well as in reference p+p and d+Au runs. J/ψJ/\psi's were measured both at mid (∣y∣<0.35|y|<0.35) and forward (1.2<∣y∣<2.21.2<|y|<2.2) rapidity. In this letter, we present the A+A preliminary results and compare them to normal cold nuclear matter expectations derived from PHENIX d+Au and p+p measurements as well as to theoretical models including various effects (color screening, recombination, sequential melting...).Comment: 5 pages, 7 figures. To appear in the proceedings of Hot Quarks 2006: Workshop for Young Scientists on the Physics of Ultrarelativistic Nucleus-Nucleus Collisions, Villasimius, Italy, 15-20 May 200

    Radiative decays of heavy and light mesons in a quark triangle approach

    Full text link
    The radiative meson decays V→PÎłV\to P\gamma and P→γγP\to \gamma\gamma are analyzed using the quark triangle diagram. Experimental data yield well determined estimates of the universal quark-antiquark-meson couplings gVqqˉâ€Čg_{Vq\bar{q}'} and gPqqˉâ€Čg_{Pq\bar{q}'} for the light meson sector. Also predictions for the ratios of neutral to charged heavy meson decay coupling constants are given and await experimental confirmation.Comment: 31 pages of RevTex, 5 figures, Postscript version available at http://info.utas.edu.au/docs/physics/theory/Publications/9548.html, scheduled to appear in Phys. Rev. D, vol 53, issue 11, 199

    Open Charm Enhancement in Pb+Pb Collisions at SPS

    Get PDF
    The statistical coalescence model for the production of open and hidden charm is considered within the canonical ensemble formulation. The data for the J/\psi multiplicity in Pb+Pb collisions at 158 A GeV are used for the model prediction of the open charm yield. We find a strong enhancement of the open charm production, by a factor of about 2--4, over the standard hard-collision model extrapolation from nucleon-nucleon to nucleus-nucleus collisions. A possible mechanism of the open charm enhancement in A+A collisions at the SPS energies is proposed.Comment: 4 pages, Late

    Charmonium from Statistical Hadronization of Heavy Quarks -- a Probe for Deconfinement in the Quark-Gluon Plasma

    Full text link
    We review the statistical hadronization picture for charmonium production in ultra-relativistic nuclear collisions. Our starting point is a brief reminder of the status of the thermal model description of hadron production at high energy. Within this framework an excellent account is achieved of all data for hadrons built of (u,d,s) valence quarks using temperature, baryo-chemical potential and volume as thermal parameters. The large charm quark mass brings in a new (non-thermal) scale which is explicitely taken into account by fixing the total number of charm quarks produced in the collision. Emphasis is placed on the description of the physical basis for the resulting statistical hadronization model. We discuss the evidence for statistical hadronization of charmonia by analysis of recent data from the SPS and RHIC accelerators. Furthermore we discuss an extension of this model towards lower beam energies and develop arguments about the prospects to observe medium modifications of open and hidden charm hadrons. With the imminent start of the LHC accelerator at CERN, exciting prospects for charmonium production studies at the very high energy frontier come into reach. We present arguments that, at such energies, charmonium production becomes a fingerprint of deconfinement: even if no charmonia survive in the quark-gluon plasma, statistical hadronization at the QCD phase boundary of the many tens of charm quarks expected in a single central Pb-Pb collision could lead to an enhanced, rather than suppressed production probability when compared to results for nucleon-nucleon reactions scaled by the number of hard collisions in the Pb-Pb system.Comment: review article, 27 pages, Landoldt review volume "Relativistic Heavy Ion Physics", Reinhard Stock, edito

    On the xFx_F Distribution of J/ψJ/\psi's Produced in Heavy Ion Collisions

    Get PDF
    Thermal production of J/ψJ/\psi in the quark gluon plasma is reconsidered. We show that if screening effects are not strong enough, the ``in-plasma born'' J/ψJ/\psi's would generate a peak in the Feynman momentum distribution at xF≃0x_F \simeq 0.Comment: 18 pages, RevTex, 7 eps figures. Comments, references and (2) tables added. Results and conclusions unchanged. Accepted for publication in Physical Review

    Recent results in relativistic heavy ion collisions: from ``a new state of matter'' to "the perfect fluid"

    Full text link
    Experimental Physics with Relativistic Heavy Ions dates from 1992 when a beam of 197Au of energy greater than 10A GeV/c first became available at the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL) soon followed in 1994 by a 208Pb beam of 158A GeV/c at the Super Proton Synchrotron (SPS) at CERN (European Center for Nuclear Research). Previous pioneering measurements at the Berkeley Bevalac in the late 1970's and early 1980's were at much lower bombarding energies (~ 1 A GeV/c) where nuclear breakup rather than particle production is the dominant inelastic process in A+A collisions. More recently, starting in 2000, the Relativistic Heavy Ion Collider (RHIC) at BNL has produced head-on collisions of two 100A GeV beams of fully stripped Au ions, corresponding to nucleon-nucleon center-of-mass energy, sqrt(sNN)=200 GeV, total c.m. energy 200A GeV. The objective of this research program is to produce nuclear matter with extreme density and temperature, possibly resulting in a state of matter where the quarks and gluons normally confined inside individual nucleons (r < 1 fm) are free to act over distances an order of magnitude larger. Progress from the period 1992 to the present will be reviewed, with reference to previous results from light ion and proton-proton collisions where appropriate. Emphasis will be placed on the measurements which formed the basis for the announcements by the two major laboratories: "A new state of matter", by CERN on Feb 10, 2000 and "The perfect fluid", by BNL on April 19, 2005.Comment: 62 pages, 39 figures. Review article published in Reports on Progress in Physics on June 23, 2006. In this published version, mistakes, typographical errors, and citations have been corrected and a subsection has been adde

    Chiral Lagrangians for Radiative Decays of Heavy Hadrons

    Full text link
    The radiative decays of heavy mesons and heavy baryons are studied in a formalism which incorporates both the heavy quark symmetry and the chiral symmetry. The chiral Lagrangians for the electromagnetic interactions of heavy hadrons consist of two pieces: one from gauging electromagnetically the strong-interaction chiral Lagrangian, and the other from the anomalous magnetic moment interactions of the heavy baryons and mesons. Due to the heavy quark spin symmetry, the latter contains only one independent coupling constant in the meson sector and two in the baryon sector. These coupling constants only depend on the light quarks and can be calculated in the nonrelativistic quark model. However, the charm quark is not heavy enough and the contribution from its magnetic moment must be included. Applications to the radiative decays D∗→Dγ , B∗→Bγ , Ξcâ€Č→Ξcγ ,ÎŁc→ΛcÎłD^\ast \rightarrow D \gamma~,~B^\ast \rightarrow B \gamma~,~ \Xi^\prime_c \rightarrow \Xi_c \gamma~, \Sigma_c \rightarrow \Lambda_c \gamma and ÎŁc→ΛcÏ€Îł\Sigma_c \rightarrow \Lambda_c \pi \gamma are given. Together with our previous results on the strong decay rates of D∗→DπD^\ast \rightarrow D \pi and ÎŁc→Λcπ\Sigma_c \rightarrow \Lambda_c \pi, predictions are obtained for the total widths and branching ratios of D∗D^\ast and ÎŁc\Sigma_c. The decays ÎŁc+→Λc+π0Îł\Sigma^+_c \rightarrow \Lambda^+_c \pi^0 \gamma and ÎŁc0→Λc+Ï€âˆ’Îł\Sigma^0_c \rightarrow \Lambda^+_c \pi^- \gamma are discussed to illustrate the important roles played by both the heavy quark symmetry and the chiral symmetry.Comment: 30 pages (one figure, available on request), CLNS 92/1158 and IP-ASTP-13-9
    • 

    corecore